
NUMERICAL STUDIES OF BLACK HOLE INITIAL DATA

BY

MICHAEL KOPPITZ

THESIS

Submitted in partial fullfilment of the requirements
for the degree of Doctor of Philosophy in Astrophysics

in the Graduate College of the
University of Potsdam, 2004

Albert Einstein Institute in Golm



c© Copyright by Michael Koppitz, 2004



NUMERICAL STUDIES OF BLACK HOLE INITIAL DATA

Michael Koppitz, Ph.D.
Department of Astrophysics
University of Potsdam, 2004

Dr. H. Edward Seidel

This thesis presents new approaches to evolutions of binary black hole systems in

numerical relativity. We analyze and compare evolutions from various physically mo-

tivated initial data sets, in particular presenting the first evolutions of Thin Sandwich

data generated by the Meudon group.

For the first time two different quasi-circular orbit initial data sequences are compared

through fully 3d numerical evolutions: (Brandt-Brügmann) Puncture data, which are

currently the most commonly used binary black hole initial data, and Thin Sandwich

data (TSD) based on a helical killing vector ansatz, that are thought to be very close

to Post-Newtonian results. The two different sets are compared in terms of the phys-

ical quantities that can be measured from the numerical data, and in terms of their

evolutionary behavior.

The evolutions demonstrate that for the latter, “Meudon”, datasets, the black holes

do in fact orbit for a longer amount of time before they merge, in comparison with

Puncture data from the same separation. This indicates they are potentially better

estimates of quasi-circular orbit parameters. The merger times resulting from the nu-

merical simulations are consistent with independent Post-Newtonian estimates that

the final plunge phase of a black hole inspiral should take 60% of an orbit. Accuracy

in individual horizon masses could typically be kept to within 2% over the course of

an evolution.

Stable evolutions demanded appropriate gauges on the initial data surface. Numeri-

cal tests of several options demonstrate that for these systems a gauge involving the

Meudon lapse and shift outside of the horizons was optimal, though modifications

were required within the horizon. The initial Meudon gauges were found to induce a
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dynamical transient phase in the early evolution when coupled to our usual “1+log”

and “Γ-driver” gauge conditions. After this phase, however, the system settles down

and continues with fewer dynamics in the evolution variables. These simulations

were supported by new techniques developed and used successfully during the long-

term evolutions. A co-rotating coordinate system, implemented via gauge conditions,

helped to keep evolutions more stable. A newly developed distance measurement

along space-like geodesics was used to analyze the data, indicating a better preserved

circularity for the Thin Sandwich data.

Additionally a new type of Kerr-Schild-based initial data (non-conformal data) is in-

troduced and implemented. In contrast to the previously mentioned methods, it does

not rely on a conformal flatness ansatz or nontrivial multiple-sheet topology, thus

potentially being astrophysically more realistic.

iv



Acknowledgments

First I would like to thank my supervisor Ed Seidel who introduced me into numerical

relativity, into the AEI and the group. He always gave advice and new perspectives

and last but not least he made all the necessary organizational commitments to make

this work possible.

Thanks to Denis Pollney for guiding me through the hardest part of this thesis. He

helped planning it, suggested numerical and physical tests, proof-read it, and kept up

the motivation.

This work is a group work. Without the many discussions about physics, numerics,

programming and computer problems with Miguel Alcubierre, Florian Beyer, Bernd
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Chapter 1

Introduction and Motivation

Einstein’s Theory of General Relativity still is the one theory that describes gravity

best. It solved many problems physics had, suggested new questions which it solved

as well, and it proposed new effects many of which were experimentally confirmed. It

completely changed the way nature is perceived.

However, some problems are still unsolved, among them the two body problem.

There are several approximations that work to high accuracy in many cases. Most

of the standard experiments to verify General Relativity Theory for instance are

compared with the test particle approximation. In this approximation the mass ratio

of the two bodies is taken to be extreme. So the influence of one of the bodies at

the other one can be neglected. However, the real solution, a four dimensional metric

that solves Einstein’s equations, is not known in general.

A very successful approximation method is the “close limit” (CL) approach [100],

which is used when the two bodies have merged or are about to merge, so that they

are located in the same gravitational well, and can be treated as one deformed object.

Perturbation theory is a very powerful tool in this situation. The background space-

time is chosen as an analytically known solution (as for example the Schwarzschild

or the Kerr solution, representing a single black hole), that has an additional small

distortion. The equations can be expanded as a series that can be cut off at some

order because of the smallness of the distortion. Many results have been achieved
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using this approximation. Price and Pullin applied this method to two black holes

that are already surrounded by a common horizon and computed the emitted gravi-

tational waves[100]. An especially successful ansatz was used by the Lazarus Project

[28, 30, 31, 27]. Here numerical results are taken when the fully relativistic code

breaks down (or shortly before) and translated into the language of the close limit

approximation, where it can be evolved further using the appropriate equations and

the relevant physical quantities (especially waveforms) can be extracted.

Another ansatz uses the so-called Post Newtonian approximation (PN) [39, 38, 62], a

method that expands Einstein’s equations into a series of 1/c2 which equals Newton’s

theory at zero order and the full General Relativity Theory in the infinite limit1. A

number of successes has been achieved using this approximation, for instance the slow

and adiabatic inspiral of two bodies well separated from each other could be modeled

quite accurately. However, when the black holes get closer and the mutual influence

grows, the Post-Newtonian ansatz breaks down.

Together Post-Newtonian methods [39, 38, 62] and the close limit approximation in

form of the Lazarus Project [28, 30] can deal with a great part of a two body system.

The inspiral part that starts at great distances is covered by the Post-Newtonian

method, and the final distorted Kerr-black hole can be treated with the close limit

methods. Only the part in between, where the most violent, most dynamic changes

of the metric and all other variables take place, must be treated fully relativistically.

During this phase the objects are still well separated and cannot be treated as one

but they are so close that the errors made even with a high order Post-Newtonian

ansatz is very large.

Especially in the advent of gravitational wave astronomy it becomes more important

also from a practical point of view to get a solution of the two body problem. Massive

objects orbiting about each other are expected to emit gravitational waves - another

1this latter statement is actually not proven yet and by many believed to be not true
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prediction of General Relativity Theory that is not proven yet. These waves can be

measured on earth using modern detectors that have just finished their first data

collection runs.

Gravitational waves will be emitted from all massive accelerated bodies, not only

from those that send electromagnetic radiation as well. These waves cannot be

shielded from us by any matter in the line of sight. This could allow the explo-

ration of regions of the universe which are obscured to conventional telescopes, such

as centers of galaxies. So there is reason to expect the detection of sources not seen

until now, as for instance dark matter, small (earthlike) planets and black holes. But

since the gravitational radiation reaching earth will be extremely weak (amplitudes of

only 10−21 are expected even for the strongest events), it will be quite difficult to de-

tect them. Of extreme importance here is the knowledge of the expected waveforms.

When the main features of the waves such as amplitude, frequency, falloff, etc. are

known, the technique of matched filtering can be used to find the signal in the vast

noise, greatly improving the possibility of detecting it.

The strongest gravitationally radiating systems are collisions of black holes. A

number of recent astronomical observations give strong evidence for black holes in

the centers of galaxies (see for example [75] and references therein). However these

observations are all only indirect- the detected radiation always stems from matter

falling into the object or orbiting it. Gravitational wave detection would for the first

time directly see black holes. Numerical simulations of globular clusters [126, 127]

suggest that binary black hole mergers could happen that often that they might be

detected via gravitational waves at estimated rates of 1.6 × 10−7 yr−1 Mpc−3, which

results in about one detected event every two years for the Laser Interferometer

Gravitational Wave Observatory (LIGO)[116] and in one event per day for the already

planned and improved device Advanced LIGO[113]. More recent estimates based on

the latest observations and numerical experiments have more or less confirmed this
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optimistic result some even estimate event-rates of app. 850 yr−1 for Advanced LIGO

and approximately 0.25 yr−1 for LIGO [116].

Once gravitational wave astronomy is established, a large number of physical details

can be expected. Apart from detecting new sources or directly detecting expected

ones, there is for example the possibility of direct determination of the physical pa-

rameters of some objects. As Schutz pointed out [103] it is possible from the frequency

and the fall-off of the periodic part of the wave (stemming from the inspiral phase)

to detect the distance to the object quite accurately. This could be used as standard

candles, much more precise than the ones used today. Another quite important fea-

ture of gravitational waves is that the early universe was transparent for them from

the first 10−43 seconds on (the Planck time). All other radiation stems from a much

later time. This permits a look into the very early universe.

So it is of crucial importance, for both theoretical and practical purposes, to find a

solution, to the two body problem of General Relativity Theory.

However, Einstein’s equations are extremely complicated, highly nonlinear coupled

differential equations. Solving them analytically is a task that has been successfully

completed only for some special systems. A general solution of the two body problem

has eluded mathematicians. Numerical simulations, however, provide another possi-

bility for solving Einstein’s equations. As will be explained in detail the usual method

is to treat them as an initial boundary values problem, splitting the equations into a

set of equations describing the initial data (thereby setting up all physical properties

of the system) and into a set of equations that evolves these data through time. The

question of how to choose physically realistic solutions to the initial data equations

is still an active subject of research.

This thesis will deal with that problem, the construction, testing, and comparing

of initial data aiming at more realistic data.

It will start with a short introduction into the so-called 3+1 split, an essential part
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of the numerical treatment of General Relativity Theory. Four-dimensional space-

time is split into a set of 3 dimensional subspaces and time. This separates Einstein’s

equations into a set of equations prescribing initial data and a set of evolution equa-

tions. The introduction will include two formulations of the evolution equations, the

original one and the one used for the evolutions in this thesis, it will show possible

choices for the gauges especially emphasizing the new drift-correct method that helps

to keep black hole horizons in place and thus to stabilize numerical evolutions.

Chapter 3 will deal with various methods to solve the initial value problem espe-

cially touching on the binary black holes. The description will start with the most

commonly used split of the initial data equations into parts that are freely specifiable

and parts that have to be solved for, the York decomposition. It will include initial

data describing black holes about to collide head-on (Misner data) and more general

data that include (or at least can include) linear or angular momentum (Puncture

data and Thin Sandwich data). Both of these types of initial data will be used later

in evolutions. The chapter will describe the problems all these data sets have and

introduce some ways to solve them.

Additionally, put in a separate section because it is original work, this chapter will

present a new way of constructing initial data. This new construction does not rely

on the York decomposition and is therefore completely different from usually used

initial data.

As a short interlude, Chapter 4 will introduce the main numerical and technical

methods used for this paper. It will touch on methods to solve elliptic equations and

describe excision. Additionally it will introduce the physical quantities used in later

chapters.

Chapter 5 will introduce an evolutionary sequence of puncture initial data due to

Cook [57]. It will show new results evolving these data and especially deal with the

time it takes to reach a merged black hole.
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In chapter 6 a version of Thin Sandwich data is introduced that uses the so-called

“helical killing vector” approach (Meudon data). For the first time evolutions of

this kind of Thin Sandwich data that could be lead to a black hole merger will be

presented. These data represent a physical system far more realistic than earlier

initial data sets. Their construction gives some inside into the physics used and their

physical properties are very close to Post-Newtonian approximations and therefore

more physically tangible than other data sets. The evolutions of these data also show

that they behave more realistic. This chapter presents the properties of this initial

data, results of evolutions starting with them, differences between several data sets,

and differences between Meudon data and Puncture data.

Finally, in chapter 7 the results of the thesis are summarized and improvements

suggested. An outlook is given on what could and should be done next to step

further in the way of solving the binary black hole problem.

All longer mathematical reasoning is collected in the appendices, which part into one

describing the 3+1 split in more mathematical detail, one that deals with the Bianchi

identities and a last one that explains the Lie derivative, which is used throughout

the paper.

1.1 Notation and Units

It is very common in the numerical community to set the speed of light as well as the

gravitational constant equal to unity. This makes units like length and time being of

unit Mass. When dealing with black holes it is also useful to normalize these units

to the mass of the black hole (or the total mass of the system if several black holes

are involved). So when dealing with a regular black hole of approximately 20 solar

masses a unit of 1M will be a length of about 30 km or a time of app. 100 µs.

Since the work is dealing solely with black holes all matter terms will be neglected

thereby simplifying the equations significantly.
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The entire paper is using the notation of MTW [91]. That is: Latin indices will

denote purely spatial objects and will run from one to three while Greek indices will

run from zero to three and thus denote full four-dimensional objects, the metric has

signature (− + ++), the curvature tensor is defined as:

Rα
βγδ ≡ Γα

βδ − Γα
βγ + Γα

λγΓ
λ

βδ − Γα
λδΓ

λ
βγ, (1.1)

the Ricci tensor and Ricci scalar are defined as:

Rµν = Rα
µαν , (1.2)

R = gµνRµν , (1.3)

respectively, and the Einstein tensor as:

Gµν ≡ Rµν −
1

2
gµνR. (1.4)
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Chapter 2

The 3+1 split

2.1 Introduction

General Relativity Theory deals with spacetime as a whole. An analytic solution of

Einstein’s equations is a four dimensional hypersurface described by a metric, a tensor

encoding the infinitesimal distance between two points. Unfortunately the equations

are complicated enough that no such analytic solution of the two body problem has

been found and it is unlikely that a general solution will be found by analytical means.

Wheeler suggested the concept of geometrodynamics [120, 90]: through a split of the

full four dimensional metric into a three dimensional space, plus time, the dynamics

of the three dimensional geometry could be introduced. This split was prescribed for

the first time by Arnowitt, Deser, and Misner (ADM) [25] attempting to quantize

gravity. Though stemming from a different motivation, this formulation of Einstein’s

equations as an initial value problem suggested compelling methods for solving the

equations. With the advent of computers in the 1960’s and 70’s, the idea of solving

Einstein’s equations numerically shaped. There have been many modifications to the

formulations commonly used since then, but the main ideas of ADM still form the

basis of standard approaches to numerical relativity. Alternatives such as null or 2+2

splits have also been studied, but in far less detail than the physically intuitive 3+1

split.
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The Cauchy ansatz has limitations. Only spacetimes that are globally hyperbolic

are constructible using a Cauchy development. That means in particular that nothing

hidden behind a Cauchy horizon can be found with this technique. However, the

“strong cosmic censorship conjecture” [96] suggests that all generic spacetimes are

globally hyperbolic, i.e. do not posses Cauchy horizons. Therefore, assuming this

conjecture to be true, all physically realistic solutions of Einstein’s equations can be

found using the Cauchy ansatz.

This chapter describes this ansatz. The following section introduces the actual split

of the four dimensional spacetime into a set of three dimensional spaces and time.

The succeeding section then will describe the equations that emerge when this split is

used on Einstein’s equations and a modification (called “BSSN”) that improves their

usability in numerical simulations. Additionally the idea of life gauges is introduced.

These have proven essential for long term evolutions. Another section in this chapter

will introduce the idea of drift-correction, a new method to keep apparent horizons

in place and therefore evolutions more stable.

2.2 The 3+1 Split

There are several ways to decompose the geometry of spacetime. Up to now the

most commonly used one is the so-called Cauchy approach, which sees spacetime as a

sequence of three dimensional spaces (“instants of time”), which are evolved forward

in time. It will be described in the this section.

This split is explained very detailed and mathematically thoroughly in York’s trea-

tise [125] (see also Cook’s review [59] and references therein) so this will only be a

brief introduction.

The four dimensional spacetime (M, gµν) is foliated by 3-dimensional space-like

hyperspaces Σ labeled by a number t. On these hyperspaces a normal vector nµ

is introduced (usually chosen to be future pointing). This construction allows the
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definition of a projection tensor hµν that has the expected properties:

hµν := gµν − nµnν

hµν = hνµ

hµνn
µ = 0 (2.1)

hµ0 = 0.

The last two relations indicate that hµν is purely spatial and projects all other geo-

metrical objects down to the spacial hypersurface. With the help of this projection

tensor it is very easy to go on with the split. The metric gµν will induce a metric γab

on Σ via:

γab = h µ
a h ν

b gµν . (2.2)

This metric can be used to lower 3d indices of three dimensional objects in the usual

way and its contravariant version γab, defined through γabγac = δa
c , is used to raise

3d indices. The time direction, tµ = ∂
∂t

, of the coordinate system can be split into a

part laying in the surface and a part orthogonal to it:

βν = hν
µt

µ, (2.3)

α = nµt
µ, (2.4)

so that

tµ = αnµ + βµ, (2.5)

where α is called the lapse function (encoding the proper distance of the slices at that

point as measured by an observer moving perpendicular to the slice) and βa the shift

vector that is moving the points within a slice (compare Fig. (2.1)). The whole four

dimensional line element can then be written as:

ds2 = −(αdx0)2 + γab(dx
a + βadx0)(dxb + βbdx0). (2.6)

Applying the projection tensor on the covariant derivative of the normal vector nµ
;ν is
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0

0

Figure 2.1: The 3+1 split. The points on the time slice at t = t0 are mapped onto
the succeeding timeslice t = t0 + δt. The lapse function α gives the separation along
the normal vector na and the shift vector βa is used to move the points within the
slice. The time coordinate is ta = αna + βa.

introducing another important tensor: the extrinsic curvature (or second fundamental

form):

Kab := hα
ah

β
bnα;β. (2.7)

By its construction Kab is a three dimensional object (it is projected down to the

slice). It represents how the three dimensional manifold is embedded in the four

dimensional one. This tensor has the important property:

Kab = −1

2
Lnγab, (2.8)

where K = γabKab is the trace of Kab. Eq. (2.8) is often taken as the actual definition

of Kab. Ln denotes the Lie-derivative with respect to the normal vector na (see

appendix C for the definition and some properties of the Lie-Derivative). It indicates

that Kab can be seen as a generalization of the time derivative of the metric.

The original ADM split used another quantity, the canonic conjugate of the metric

π defined through

Kab = Kγab − γ−
1

2πab. (2.9)
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This shows that Kab with its easily understood geometrical meaning is very close to

the canonic variable. Therefore York in his rewriting of the ADM formalism used the

extrinsic curvature instead of the canonical conjugate of the metric, a method that

will be adapted here.

2.3 Formulations

2.3.1 ADM

Introducing the metric and the extrinsic curvature to the vacuum Einstein’s equations

leads (as shown in appendix A) to the so called ADM equations [25]. They still have

this name even though they differ slightly from the original due to changes York

proposed [125]1:

R +K2 −KijKij = 0, (2.10)

Dj(K
ij − γijtrK) = 0. (2.11)

d

dt
γij = −2αKij, (2.12)

d

dt
Kij = −DiDjα + α(Rij +KKij − 2KikK

k
j ), (2.13)

where

d

dt
=

∂

∂t
− Lβ. (2.14)

Here Lβ denotes the Lie derivative with respect to the shift vector β i, R the 3D scalar

curvature constructed with the 3-metric γab of the 3-space, and Da the covariant

derivative associated with γab.

The first two equations (Eq. (2.10) and Eq. (2.11)) contain only spatial derivatives

of the 3D scalar curvature (which has no time derivatives of the metric) and the

extrinsic curvature. Therefore these equations do not contain second time derivatives

of the metric. They are not evolution equations, but instead impose constraints on

1as mentioned above the original ADM paper used πab instead of Kab
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the system. They are called Hamiltonian- (or Scalar-) and Momentum- (or Vector-

) constraint, respectively. In spacetimes with matter the right hand sides of these

equations include the energy density or the momentum density of this matter. This

is where the names of the constraints come from.

The latter two equations (Eq. (2.12) and Eq. (2.13)) are the evolution equations

for the geometrical quantities γab and Kab. From the dynamical point of view (of

geometrodynamics) they represent the actual second order (in space and time) dif-

ferential equations for the three metric. To be able to solve them one has to give an

initial metric γab and its time derivative Kab. However, these cannot be given freely

but are subject to the constraint Eqs. (2.10) and (2.11).

As shown in Appendix B the Bianchi identities guarantee that a solution of the

constraint equations is also a solution of the evolution equations.

2.3.2 The BSSN Formulation

Until recently, the ADM formulation was the standard method of writing the equa-

tions for numerical relativity. Since in numerical evolutions the ADM system turned

out to be unstable, several studies have been made to improve it [68, 69, 70, 71, 72, 63,

7, 24, 73]. All evolutions for this work are made with an alternative formulation whose

success is largely induced by empirical experience. It separates out the conformal and

traceless part of the ADM evolution equations, as proposed already in 1995 by Shi-

bata and Nakamura [105]. However, the numerical relativity community did not take

notice until Baumgarte and Shapiro [34] showed its remarkable stability properties by

comparing the standard ADM formulation against the modified Shibata-Nakamura

formulation. The group at AEI developed an implementation of this scheme: the

“BSSN” (Baumgarte, Shapiro, Shibata, and Nakamura) formulation. This chapter

explains the details of this formulation.

This system reformulates the ADM (Eqs. (2.12) and (2.13)) by introducing new

13



evolution variables. The metric is rewritten as:

γ̃ij = e−4φγij. (2.15)

The conformal factor φ is constraint by

e−4φ = γ1/3 ≡ det(γij)
1/3, (2.16)

which fixes the determinant of γ̃ to unity. Instead of the extrinsic curvature Kij here

its trace free part Aij is used. It is defined by

Aij := Kij −
1

3
γijK, (2.17)

where K = γijKij is the trace of the extrinsic curvature. It is also conformally

decomposed:

Ãij = e−4φAij. (2.18)

One can split Eq. (2.12) as

d

dt
γ̃ij = −2αÃij, (2.19)

d

dt
φ = −1

6
αK. (2.20)

Using the Hamiltonian constraint (Eq. (2.10)), the evolution equation for trace of

the extrinsic curvature K becomes

d

dt
K = −γijDiDjα + α(ÃijÃ

ij +
1

3
K2). (2.21)

The evolution equation for the trace free extrinsic curvature is

d

dt
Ãij = e−4φ[−DiDjα + α(Rij − Sij)]

TF + α(KÃij − 2ÃilÃ
l
j).

The Ricci tensor can be written

Rij = R̃ij +Rφ
ij, (2.22)

14



where the conformal factor part Rφ is calculated by computation of derivatives of

φ:

Rφ
ij = −2D̃iD̃jφ− 2γ̃ijD̃

lD̃lφ+ 4D̃iφD̃jφ− 4γ̃ijD̃
lφD̃lφ.

The conformal part R̃ij can be computed from the conformal three metric γ̃ij.[34]

used an auxiliary variable which is called the “conformal connection function”

Γ̃i = γ̃jkΓ̃i
jk = −γ̃ij

,j, (2.23)

where the second equality holds if the determinant of the conformal three metric

γ̃ is actually unity. (This is analytically true, but it may turn out to be not so

numerically.)

Using the conformal reconnection function, the Ricci tensor can be written as

R̃ij = −1

2
γ̃lmγ̃ij,lm + γ̃k(i∂j)Γ̃

k + Γ̃k + Γ̃Γ̃(ij)k

+γ̃lm(2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃klj). (2.24)

One has a number of choices in how the terms involving the conformal connection

function Γ̃i are computed. However, to guarantee the Ricci tensor retains its elliptic

character, the Γ̃i should be promoted to independent variables.

The evolution equations for the Γ̃i are

∂

∂t
Γ̃i = − ∂

∂xj
(2αÃij + 2γ̃(jβi)

,m − 2

3
γ̃ijβl

,l − βlγ̃ij
,l).

Empirical tests have shown that using the momentum constraints and eliminating

the divergence of Ãij results in the greatest improvements in numerical stability [].

This turns Eq. (2.25) into

∂

∂t
Γ̃i = −2Ãijα,j + 2α(Γ̃i

jkÃ
kj − 2

3
γ̃ijK,j − γ̃ijSj + 6Ãijφ,j)

+
∂

∂xj
(βlγ̃ij

,l − 2γ̃m(iβi)
,m +

2

3
γ̃ijβl

,l). (2.25)
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Now, there are seventeen evolution equations: six for the conformal three metric

γ̃ij (Eq. (2.19)), six for the conformal traceless extrinsic curvature variables Ãij (Eq.

(2.22)), another one for the conformal factor (Eq. (2.20)), one for the trace of the

extrinsic curvature K (Eq. (2.21)), and three for the conformal connection functions

(Eq. (2.25)).

For the work for this paper the BSSN scheme is implemented the following way:

• The Γi are promoted to independent variables.

• The momentum constraint is used to transform the evolution equation for Γi.

• trÃ = 0 is enforced at each time step.

• When maximal slicing is used, trK = 0 is enforced at each time-step.

• The constraints are not enforced.

Ideally one would like to know if the different systems are well-posed. However, the

system of equations are mixed first-second order systems and as such they can not be

classified in terms of their hyperbolicity. This makes a study of their well-posedness

particularly difficult. The presence of constraints further complicates matters. Be-

cause of this fact, usually only linear perturbations of a flat background have been

studied using a Fourier analysis.

Alcubierre Ref. [3] has given a mathematical understanding of the stability prop-

erties of the ADM and BSSN equations in the linear regime: The numerical errors,

introduced through roundoff and machine precision are treated differently in the dif-

ferent systems. In the ADM system there are modes which do not propagate during

the evolution, they stay in place and can grow undisturbed and eventually kill the

run. The same modes, even though they may grow faster, are carried away in the

BSSN system until the leave the grid. This comes to help the stability of the BSSN

system on a finite domain.
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2.4 Coordinate Conditions

A very important problem doing numerical evolutions of Einstein’s equations is the

choice of the gauge. One is allowed to choose the lapse and the shift function freely,

corresponding to a choice of slicing and of coordinates within each slice. This does

not change the physical properties of the metric. However, doing so can have large

influence on the numerical evolutions.

The immediate idea would be to use so-called geodesic slicing: evolve with a lapse

of 1 and a shift of 0 and let the grid-points float along geodesics. However, as can be

shown analytically for the Schwarzschild solution, with such a slicing condition one

would hit the singularity after a short time (π M in the Schwarzschild case), causing

any numerical code to crash. Therefore one has to use a more elaborate slicing.

The first results for colliding black holes were obtained for head-on collisions using

the ADM decomposition of the Einstein equations with the lapse determined by the

“maximal slicing” condition and the shift vector set to zero [108, 109, 23]. Maximal

slices are slices that obey the condition

trKab ≡ K = 0, (2.26)

with trKab being the trace of the extrinsic curvature (also named mean curvature).

Noting that K = −∇an
a, this states that the Eulerian world-lines are like those of

an incompressible “test fluid”. The name “maximal” comes from the fact that the

volume of a bounded region Ω will be an extremum (with the metric’s signature at

hand it will be maximal, a Euclidian signature would give a minimum):

vol(Ω) =
∫

Ω
(detγ)

1

2d3x. (2.27)

Looking at the variation of the volume under small deformations of the slice along a

vector λa = lna + σa, with naσ
a = 0, and l = σa = 0 on the boundary δΩ:

δvol(Ω) =
∫

Ω
d3x(detγ)

1

2 [−lK] , (2.28)
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one sees that since l is arbitrary, one has to have K = 0 to get the variation vanish.

Maximal slices are those which maximize the volume. Those slices “avoid” regions

with a large value of the three metric especially singularities. Therefore maximal

slices are known to be singularity avoiding, that is, starting from black hole initial

data where the physical singularity is to the future of the initial hypersurface, the

lapse approaches the Minkowski value of unity in the asymptotically flat regions, but

approaches zero near the physical singularity2. In this way one can in principle foliate

a black hole spacetime without including singularities. However, since time marches

on in the far regions while being frozen in the interior, the slices become more and

more distorted (compare Fig. (2.2)). This stretching introduces a difficult problem

for numerical simulations since the metric develops large gradients that continue to

grow until the finite differencing can no longer handle them and fails. Advanced

numerical methods can help in spherical symmetry, see e.g. [40], but to date have not

proved successful in three dimensional (3D) evolutions [118].

Nonetheless, such singularity avoiding slicings with vanishing shift do allow black

hole space-times to be evolved for long enough that useful physical information can

be obtained, as first demonstrated in 1995 for the case of a single Schwarzschild black

hole [20]. In [49] the first fully 3D simulation of the grazing collision of two nearby

black holes (as measured by their apparent horizon separation) was performed with

singularity avoiding slicing and vanishing shift, lasting for about 7M . With improved

techniques the grazing collision has recently been pushed to about 35M , which for

the first time allowed the extraction of gravitational waveforms from a 3D numerical

merger [4]. And even though singularity avoiding slicings with vanishing shift have

so far been limited to a finite time interval before slice stretching becomes a fatal

2Eardley and Smarr [66] have shown that this is not proven to be always the case. Counter-
examples indicate that just requiring trK to vanish is far too weak a condition to guarantee sin-
gularity avoidance. However, they conjectured that this requirement is strong enough in vacuum
space-times.
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Figure 2.2: Singularity avoiding slicing. Starting from initial data where the physical
singularity is to the future of the initial hypersurface, a singularity avoiding lapse
keeps the Minkowski value of unity in the asymptotically flat regions, but approaches
zero near the physical singularity. The slices get bent more and more in the interme-
diate region. The distance between points grows, which eventually leads to problems.

problem, this interval can be moved into the truly non-linear regime of a plunge

starting from an approximate innermost stable circular orbit (ISCO) of two black

holes, since the remainder of the merger and ring-down can be computed using the

before mentioned close limit approximation [30]. Following such an approach, the

first waveforms for the plunge from an approximate ISCO have been obtained [27].

So far the most important strategy to avoid slice stretching has been black hole

excision explained in detail in chapter 4.4. One of the key differences between black

hole excision and the use of singularity avoiding slicings with vanishing shift is that

with excision single static black holes can be stably evolved for essentially unlimited

amounts of time, as shown by the AEI group in [6].

However, using newly developed gauge conditions the AEI group could show that

it is even possible to drive a distorted black hole system toward an essentially static

state, avoiding the chronic growth in metric functions typical of slice stretching3.

3Slice stretching is not completely eliminated [36]
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Hence, in principle they should allow for indefinitely long evolutions. Moreover, since

unbounded growth in metric functions is halted, they allow much more accurate

results to be obtained for extremely long times, and at lower resolution than before.

The group obtained results for colliding black holes showing at low resolution only

10% error in the horizon mass after more than 5000M of evolution.

One fundamental observation for this choice of shift vector is that the “Gamma

freezing” shift introduced in [12] has a useful property when the black holes are not

excised but are represented as punctures: Initially the shift is zero, but as the slice

stretching develops, the shift reacts by pulling out points from the inner asymptot-

ically flat region near the punctures. The lapse and shift conditions taken together

are then able to virtually stop the evolution of one or even two black holes, essentially

mimicking the behavior of the lapse and shift known from stable evolutions of a black

hole in Kerr-Schild coordinates. This is a key result that will be detailed below.

2.4.1 The Lapse Function

The starting point for the slicing conditions is the “K-freezing” condition ∂tK=0,

which in the particular case when K=0 reduces to the well known “maximal slicing”

condition. The K-freezing condition leads to the following elliptic equation for the

lapse:

∆α = βi∂iK + αKijK
ij , (2.29)

with ∆ the Laplacian operator for the spatial metric γij. In the BSSN formulation,

once the elliptic equation for the lapse is solved, the K-freezing condition can be

imposed at the analytic level by simply not evolving K.

One can construct parabolic or hyperbolic slicing conditions by making either ∂tα

or ∂2
t α proportional to ∂tK. Following [32] such conditions are called “K-driver”. The

hyperbolic K-driver condition has the form [40, 12]:

∂tα = −α2f(α)(K −K0), (2.30)
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where f(α) is an arbitrary positive function of α and K0 = K(t = 0). A choice used

for most successful black hole evolutions is

f(α) =
2

α
, (2.31)

which is referred to as 1+log slicing and has excellent singularity avoiding properties.

The hyperbolic K-driver condition is in fact only a slight generalization of the Bona-

Masso family of slicing conditions [40]: ∂tα = −α2f(α)K.

By taking an extra time derivative of the slicing condition above, and using the

evolution equation forK, one can see that the lapse obeys a generalized wave equation,

∂2
t α = −∂t(α

2f)(K −K0) − α2f∂tK

= α2f(∆α− αKijK
ij − βiDiK + 2αf + α2f ′). (2.32)

In black hole evolutions where the lapse collapses to zero, condition (2.30) guarantees

that the lapse will stop evolving. In practice the condition Eq. (2.30) leads to more

stable black hole evolutions.

The wave speed is vα = α
√

f(α), which explains the need for f(α) to be positive.

Depending on the value of f(α), this wave speed can be larger or smaller than the

physical speed of light. This represents no problem, as it only indicates the speed of

propagation of the coordinate system, i.e. it is only a “gauge speed”. In particular, for

the 1+log slicing introduced above with f = 2/α, the gauge speed in the asymptotic

regions (where α ' 1) becomes vα =
√

2 > 1. One could then argue that choosing

f = 1/α should be a better alternative, as the asymptotic gauge speed would then

be equal to the physical speed of light. However, experience has shown that such a

choice is not nearly as robust and seems to lead easily to gauge pathologies as those

studied in [2, 8].
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2.4.2 Shift conditions

In the BSSN formulation, an elliptic shift condition is easily obtained by imposing

the “Gamma-freezing” condition ∂tΓ̃
k=0, or using Eq. (2.25),

γ̃jk∂j∂kβ
i +

1

3
γ̃ij∂j∂kβ

k − Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j + βj∂jΓ̃
i

−2Ãij∂jα− 2α
(

2

3
γ̃ij∂jK − 6Ãij∂jφ− Γ̃i

jkÃ
jk
)

= 0. (2.33)

Just as with theK-freezing condition for the lapse, once the previous elliptic equations

for the shift is solved, the Gamma-freezing condition can be enforced at an analytic

level by simply not evolving the Γ̃k.

The Gamma-freezing condition is related to the well known minimal distortion shift

condition [110]:

∇jΣ
ij = 0 , (2.34)

where Σij is the so-called “distortion tensor” defined as

Σij :=
1

2
γ1/3∂tγ̃ij , (2.35)

with γ̃ij the same as before. The evolution equation for the conformal connection

functions (2.25) can be written in terms of Σij as

∂tΓ̃
i = 2∂j

(

γ1/3Σij
)

. (2.36)

More explicitly

∂tΓ̃
i = 2e4φ

[

∇jΣ
ij − Γ̃i

jkΣ
jk − 6Σij∂jφ

]

. (2.37)

This shows that the minimal distortion condition ∇jΣij = 0, and the Gamma-

freezing condition ∂tΓ̃
i = 0 are equivalent up to terms involving first spatial derivatives

of the spatial metric multiplied with the distortion tensor itself. In particular, all

terms involving second derivatives of the shift are identical in both cases (but not so

terms with first derivatives of the shift which appear in the distortion tensor Σij).
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That the difference between both conditions involves Christoffel symbols should not

be surprising since the minimal distortion condition is covariant while the Gamma-

freezing condition is not.

Just as it is the case with the lapse, one can obtain parabolic and hyperbolic

shift prescriptions by making either ∂tβ
i or ∂2

t β
i proportional to ∂tΓ̃

i and call such

conditions “Gamma-driver” conditions. The parabolic Gamma driver condition has

the form

∂tβ
i = Fp ∂tΓ̃

i , (2.38)

where Fp is a positive function of space and time. As a hyperbolic Gamma driver

condition

∂2
t β

i = F ∂tΓ̃
i − η ∂tβ

i, (2.39)

was taken, where F and η are positive functions of space and time. For the hyperbolic

Gamma-driver conditions it turned out to be crucial to add a dissipation term with

coefficient η to avoid strong oscillations in the shift. Experience has shown that by

tuning the value of this dissipation coefficient one can manage to almost freeze the

evolution of the system at late times.

An important point that needs to be considered when using the hyperbolic Gamma-

driver condition is that of the gauge speeds. Just as it happened with the lapse, the

use of a hyperbolic equation for the shift introduces new “gauge speeds” associated

with the propagation of the shift. Consider the shift condition (2.39) for small per-

turbations of flat space (and taking η=0). From the form of ∂tΓ̃
i given by (2.19) one

can see that in such a limit the principal part of the evolution equation for the shift

reduces to

∂2
t β

i = F
(

δjk∂j∂kβ
i +

1

3
δij∂j∂kβ

k
)

. (2.40)

Considering only derivatives in x direction one finds

∂2
t β

i = F
(

∂2
xβ

i +
1

3
δix∂x∂xβ

x
)

, (2.41)
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which implies

∂2
t β

x =
4

3
F∂2

xβ
x , (2.42)

∂2
t β

q = F∂2
xβ

q q 6= x . (2.43)

This shows that in regions where the spacetime is almost flat, the longitudinal part of

the shift propagates with speed vlong = 2
√

F/3 while the transverse part propagates

with speed vtrans =
√
F . Therefore the choice

F (α) =
3

4
α, (2.44)

will make the longitudinal part of the shift propagate with the speed of light. The

transverse part will propagate at a different speed, but its contribution far away is

typically very small.

Using these lapse and shift conditions combined it was possible to bring the dy-

namics in binary black hole evolutions basically to a halt at late times and with that

to extend the lifetime of such evolutions dramatically.

2.4.3 Co-rotation

Astrophysically realistic binary systems will of course generally be in orbit about each

other. From a computational point of view, this would mean that the objects must

be propagated around each other across the computational grid. This can introduce

many complications in the numerical treatment, chief among them that (i) orbital

motion could lead to a tangling of coordinate systems in numerical relativity, (ii)

propagating objects such as black holes or neutron stars across a numerical grid leads

to dissipation which in turn leads to artificial loss of a number of quantities like

angular or linear momentum, and (iii) moving black holes across a numerical grid

with excision techniques (see section 4.4) is extremely complex computationally, and

has still some time to mature before it can be used in such calculations.
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Figure 2.3: The drift-correct method. The centroid C of one of the black holes is
tracked, the angle ξ measured, the effective angular velocity of the centroid Ωc is
computed, and the shift vector is changed according to Eq. (2.46).

If a suitable co-rotating frame could be developed for binary systems, so that in

the frame of the calculations the objects do not orbit each other, but rather simply

fall together, the problem simplifies dramatically, as orbital dynamics are effectively

eliminated from the calculation. In this case, the problem becomes similar to a head-

on collision, which is clearly much simpler, and which, as described above, has already

been performed very robustly and accurately in simpler systems.

The new method, developed within the work of this thesis [13], consists of tracking

the centroids of the black hole horizons and adjusting the shift to counteract this

motion, or “drift”. This is why it is called “drift correction”. The centroid C of

the horizon H1 of one of the black holes is calculated by taking the arithmetic mean

of the points on the horizon. Then the angle ξ between some fiducial line, such as

the y-axis, and the line connecting the centroid with the the origin of our coordinate

system is calculated. By measuring ξ at regular intervals of coordinate time in the

simulation, a measure of the “angular velocity” of the centroid is gained, which is

then counteracted by applying a corresponding rotation Ωc in the opposite direction.
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If the angle ξ changes by an amount ∆ξ in a time ∆t, the “angular velocity” Ωc is

given by

Ωc = −k∆ξ/∆t, (2.45)

where k is some adjustable parameter of order unity, and the minus sign indicates a

correction in a direction opposite to the drift. Choosing k slightly greater than 1, e.g.

k = 1.3, to over-correct by a small amount, turns out to be best in practice because

the drift correction might only be applied at intervals (∆t) of several time-steps. This

Ωc is then added to the angular component of the shift at all points (x, y, z) in the

simulation domain:

βx
dc := βx − yΩc f

βy
dc := βy − xΩc f, (2.46)

where f(x, y, z) is some adjustment function of the spacetime curvature and the index

dc stands for drift-correction.

The function f(x, y, z) used with black hole puncture data (see section 3.2.3) ensures

that the shift goes to zero at the punctures. For example one can use f = 1/ψα,

where ψ is the conformal factor which goes to infinity at the punctures, and α is

some positive power.

An additional radial drift-correction can be introduced to calm the motion of the

coordinates even more:

βi
dc = βig(r, ṙ), (2.47)

where i = 1, 2 and g is some function of the radius r and its time derivative ṙ.

First successful tests have been done using this improved gauge condition showing

improved results (see chapter 6).

Note that also other grid-functions can be tracked to adjust the shift. For instance

the lapse function. Experience has shown that with maximal slicing of single black

hole evolutions when the lapse function drops below 0.3 an apparent horizon will
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appear. So a code could use iso-surfaces of α = 0.3 instead of an apparent horizon

finder to estimate the black hole location.
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Chapter 3

The Initial Data Problem

3.1 Introduction

As described in chapter 2 a numerical solution of Einstein’s equations starts with

initial data which solve the constraint equations (Eq. (2.10) and Eq. (2.11)). This

chapter will describe methods to solve them. It will explain the usually used sets of

initial data, introduce recently published new ways of solving the equations and come

in the last section to a new construction method that was developed in the course of

this thesis.

A solution of the constraint equations sets the physical properties of the system.

While it is a difficult problem to write the evolution equations in a suitable way, to

solve them accurately enough, and to get them to converge to a solution, in principle

they deterministically evolve a system with the physical (and numerical) properties set

by the initial data. No new information is needed nor gained. It is therefore of extreme

importance how the initial data constraints are solved and what the properties are,

that where given to the system.

The problem of solving the constraints is threefold:

• decomposing the variables into a set of freely specifiable variables and the vari-

ables that are determined by the constraint equations

• choosing values for the free variables corresponding to a desired physical system
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• solving the constraint equations

The first task becomes clear, when counting equations and variables: there are 4

(3+1) equations for the 12 (2 x 6) variables γab and Kab. The system is heavily under-

determined. This is not a flaw of the theory but a virtue: it allows for the principle

of general covariance.

However, there is nothing to say which variables are to be chosen freely and which

are not. So even before anything can be set to be physical (or not) a choice has

to be made on how to decompose the variables into freely specifiable ones and in

components that are fixed by the equations. The resulting equations will vary in

mathematical as well as in numerical terms. So the choice of the decomposition is

very important in determining the solution of the initial value problem.

The second task than is easily understood: the variables that are chosen to be

freely set and are not determined through the equations now have to be set. While

in principle this choice is free, to set them to anything meaningful or physically

reasonable is in fact quite difficult. As will be seen later these variables not always

have a direct physical meaning, yet they influence the physical properties of the

system. And they can complicate the equations mathematically. So up to very

recently the choice was made rather for mathematical simplicity or convenience than

for physical relevance.

The last task can be mathematically very involved, depending on the choice of

decomposition the character of the equations changes. In full generality, they become

a system of strongly coupled, non-linear, and elliptic or semi-elliptic second order

differential equations. There is only a very limited number of analytic solutions

known to some special cases. As soon as the simplifying symmetries or additional

assumptions are left out, very sophisticated numerical methods are needed to treat

them. Since the solution is global on the slice a suitable choice of boundary conditions

has to be made - preferably based on physical grounds, which will determine which
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solution is found. Once that is done, the equations have to be solved. Regular

methods usually slow down very rapidly when the number of grid points increases.

More sophisticated methods as for instance a multi-grid solver have to be used to

speed the solution procedure.

This chapter will describe the most commonly used decomposition of the con-

straints, the one proposed by York and Lichnerowicz [125] and deal with some solu-

tions to the binary black hole problem. This subject is explained in great detail in [59].

Additionally a newly suggested decomposition, not relying on Yorks procedure, will

be explained.

3.2 Solving the Constraints (I):

The York Procedure

The constraint equations pose a set of four differential equations on the 12 functions

γab and Kab. Taking general covariance into account which gives the freedom to chose

four coordinate functions freely, one is left with eight degrees of freedom. The problem

at hand is which of the 12 variables should be regarded as freely specifiable.

Already in 1944 Lichnerowicz proposed to decompose the 3-metric via a conformal

transformation [85]:

γab = Ψ4γ̃ab, (3.1)

where Ψ is the conformal factor and γ̃ab the conformal or background metric. Having

the conformal metric freely specifiable, this equation will fix 5 of the 8 free degrees.

The Hamiltonian constraint becomes an equation for the conformal factor:

∇̃2Ψ =
1

8
ΨR̃− 1

8
Ψ5K2 +

1

8
ψ5KabK

ab = −2πGΨ5ρ, (3.2)

where ∇̃2 = ∇̃a∇̃a and ∇̃a and R̃ are the covariant derivative and the Ricci Scalar

constructed with the conformal metric γ̃ab (all variables marked with a tilde will refer
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to objects in the conformal space). The right hand side comes from the energy-

momentum tensor, which is zero in vacuum (black hole) spacetimes.

A treatment of the extrinsic curvature, and with that the full decomposition, was

described by York. It follows a similar path. First the extrinsic curvature is split into

a trace free part and the trace:

Kab = Aab +
1

3
Kγab. (3.3)

Second, a general property of trace-free symmetric tensors is used. They can be

decomposed as follows [123]:

Sab = (LX)ab + T ab, (3.4)

where T ab is a symmetric transverse-traceless tensor (i.e. ∇bT
ab = 0 and T a

a = 0) and

the vector operator (LX)ab is (in three dimensions) defined by

(LX)ab = ∇aXb + ∇bXa − 2

3
γab∇cX

c (3.5)

Now there are two ways to proceed. Either this property is used directly on the

trace-free part of the extrinsic curvature, Aab, and the result is split into a conformal

part and a factor; or the order is reversed. The two procedures conformal splitting

and transverse splitting do not commute. Depending on the order of operations, the

decomposition is called “conformal” or “physical” transverse-traceless decomposition

respectively. The free variables as well as the resulting equations are different, so

it is no surprise that the resulting solutions are different (see for a comparison [99]).

Using the conformal transverse traceless decomposition one ends up with the following

equations:

Aab = Ψ−10Ãab (3.6)

Ãab = (LV )ab + M̃ab (3.7)

∇̃b(LX)ab =
2

3
Ψ6∇aK + 8πGΨ6ja. (3.8)
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The choice of the exponent in Eq. (3.6) for the conformal split of the extrinsic

curvature is made because of the resulting useful property of every symmetric trace

free tensor:

Ψ10∇̃bS
ab = ∇̃b(Ψ

10Sab) (3.9)

Again the terms including the energy flow ja stem from the energy momentum tensor

and will be omitted in the following.

In contrast, the physical transverse traceless decomposition leads to:

Aab = (LV )ab +Mab (3.10)

Ãab = (LV )ab + M̃ab (3.11)

(LV )ab = Ψ−4((L̃V )ab) (3.12)

Mab = Ψ10(M̃ab) (3.13)

∇̃b(LV )ab + 6(L̃V )ab∇̃blnΨ =
2

3
∇̃aK − Ψ6∇bM

ab + 8πGΨ4ja (3.14)

As mentioned above these systems are different and will in general lead to different

solutions. Comparing the two systems one notices that they are both coupled, but

that the conformal transverse traceless decomposition leads to decoupled equations

if K = γabK
ab is set to zero. Since this simplifies the solution procedure crucially,

this is the method usually used (also for this paper) when dealing with the York-

Lichnerowicz procedure.

3.2.1 Binary black holes

Once the decomposition has been chosen, the free variables must be fixed. The

simplest choice would be a flat conformal metric γab = δab, and vanishing extrin-

sic curvature, Kab = 0. This simplifies the constraint equations dramatically. The

momentum constraint is solved identically and the Hamiltonian constraint becomes:

∇̃2Ψ = 0, (3.15)
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where ∇̃2 is the Laplace operator built with the conformal metric, so in case it is the

regular flat Laplace operator. The simplest solution of these equations certainly is

Ψ = 1, which will result in a flat (Minkowski) metric. A solution found just as easily

is Ψ = 1 + c/r, which is (with the right choice of the lapse and c = M/2) the well

known Schwarzschild solution in isotropic coordinates, that led to the famous picture

of the Einstein-Rosen bridge:

ds2 = −(
1 − M

2r

1 + M
2r

)2dt2 + (1 +
M

2r
)4(dr2 + r2dθ2 + r2 sin2 θdφ2), (3.16)

The metric is not changed (isometric) under reflections at the event horizon (located

at r = M/2), mapping the exterior region to an “upper sheet” and the interior to a

“lower” sheet. This can be pictured as shown in Fig. (3.1).

Figure 3.1: Visualization of an Einstein-Rosen Bridge. The interior of a black hole is
mapped onto a manifold with the same metric as the exterior part. The singularity
is only a coordinate singularity, a compactified spatial infinity.

As can be seen easily here, in these coordinates the point r = 0 is not a physical

singularity but simply a coordinate artefact. The physical singularity lies in to future

of this picture.

Now a nice property of Eq. (3.15) comes into play: it is linear. Therefore two

solutions can be added to become a third one:

Ψ = 1 +
m1

2r1
+
m2

2r2
(3.17)
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or, more generally, N black holes can be added.

Ψ = 1 +
N
∑

i

m(i)

2|~r − ~r(i)|
(3.18)

is a solution to the constraint equations encoding N black holes, the so-called Brill-

Linquist solution [47]. The black holes are momentarily at rest and will via the

evolution equations collide “head on” meaning with no angular momentum involved.

Topologically they resemble a three-sheeted topology shown in Fig. (3.2).

Figure 3.2: Visualization of a three sheeted topology, the lower parts are not con-
nected. Each black hole’s interior is mapped to a different manifold. These lower
manifolds do not have the same metric as the “upper”, exterior ones.

Misner [89] found an isotropic solution, for which there are two identical sheets. He

used the so-called “bispherical coordinates”:

cothµ =
x2 + y2 + z2 + a2

2az
(3.19)

cotη =
x2 + y2 + z2 − a2

2a
√
x2 + y2

(3.20)

cotφ =
x

y
, (3.21)

with a a scale parameter with dimension length. One can check that µ=const. is a

sphere. So choosing µ = ±µ0 and demanding µ to be periodic (that is identifying the

points (µ, ηφ) and (µ+2nµ0, η, φ)) one can create a manifold with topology shown in
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Fig. (3.4) (the original wormhole). Misner used York’s conformal split of the metric

(see section 3.2) and the following metric as conformal metric:

ds̄2 = dµ2 + dη2sin2ηdφ2. (3.22)

Choosing boundary conditions of asymptotic flatness, periodicity of the coordinates,

mirror symmetry in the z=0 plane (the two spheres (and so their masses) are identi-

cal), and rotational symmetry about the z-axis, the unique solution of the Hamiltonian

constraint is:

Ψ = a
1

2

∞
∑

n=−∞

[cosh(µ+ 2nµ0) − cosη]−
1

2 . (3.23)

The parameters µo and a can be related to the total mass M of the system and to

the length L0 of the minimal closed 3-geodesic connecting the two mouths through

the formulas:

M = 4a
∞
∑

n=1

csch n µ0 (3.24)

L0 = 2a

[

1 + 2µ0

∞
∑

n=1

n csch n µ0

]

. (3.25)

This solution also encodes two black holes momentarily at rest and about to collide

head on. The difference to the Brill-Linquist data is their topology. Misner’s data

represent a two-sheeted topology. As can be seen in Fig. (3.4) Misner data contain

an infinite number of singular points for each black hole, each representing an image

of one of two asymptotic infinities (each hole is “seen” infinitely many times though

the other black hole’s throat). In Eq. (3.23) this is taken into account in the infinite

summation.

Note that even though the Brill-Lindquist and the Misner data differ in their topol-

ogy, solutions where the black holes are chosen to have the same size and separation

are locally very similar [1].

Both the Misner and the Brill-Linquist data encode head-on collisions, a situation

unlikely to be found in reality.
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The Misner data have been a well studied test case for numerical relativity. Brill-

Linquist data is becoming more popular now due to generalizations to orbiting data.,

which will be subject of the following section.

Figure 3.3: Visualization of a two sheeted topology, all throats end in the same (lower)
manifold. This manifold has the same metric as the upper one.

3.2.2 Treating the Extrinsic Curvature

Bowen and York [44, 45] found a solution for the momentum constraint, correspond-

ing to multiple black holes with angular or linear momentum, generalizing Misner’s

solution. They assume a conformally flat metric and vanishing trace of the extrinsic

curvature (K = 0, maximal slicing), but chose the trace free part of the extrinsic

curvature to be non vanishing.

They use the above mentioned conformal transverse traceless decomposition, start-

ing with the split

Ãij = Ãij
∗ + (L̃W )ij, (3.26)

where (L̃W )ij = D̃iW j + D̃jW i − 2/3γijD̃kW
k, and chose the transverse part to
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vanish: Ãij
∗ = 0 Then the momentum constraints become:

D̃j(L̃W )ij = 0, (3.27)

which has the the solution

W i = − 1

4r
(7P i + ninjP

j) +
1

r2
εijknjSk, (3.28)

with P i and Si being vector parameters, r a coordinate radius, ni radial vectors

normal to the ith black hole, and εijk denoting the 3 dimensional Levi-Civita tensor.

This solution of the momentum constraints yields the trace free part of the extrinsic

Figure 3.4: Two black holes in the classic wormhole picture as a topology of flat space
with a handle.

curvature

Ãij =
3

2r2
(Pinj + Pjni − (fij − ninj)P

knk) +
3

r3
(εijkS

lnknj + εkilS
lnkni). (3.29)

Again, due to the linearity of the momentum constraint, an arbitrary number of

black holes can be constructed by adding different extrinsic curvatures as given in

Eq. (3.29), with different positions, linear and angular momenta. Using this extrinsic

curvature together with the metric reconstructed from the conformal factor (which

is a solution of the Hamiltonian constraint) and the flat conformal metric, one can

create initial data representing N black holes, each with arbitrary linear and angular
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momentum. However, the parameters P a and Sa that denote in a single black hole

solution the linear and angular momenta cannot be taken as such to encode literally

the individual momenta of the different black holes. These quantities are only defined

in the limit of infinite separation of the holes. But one very useful property of these

data is, that unlike in other constructions, here the total linear momentum computed

as expected agrees with the ADM value, defined later:

Ptot = P1 + P2. (3.30)

For the angular momentum,

Stot = S1 + S2 + (C1 − O) × P1 + (C2 −O) × P2. (3.31)

In both equations (Eq. (3.30) and Eq. (3.31)), Pi is taken to be the vector of the

specified parameter values for the linear momenta, Si for the angular momenta and

Ci for the positions of the individual black holes.

From the ADM split it is known that the total momentum for the linear and angular

momentum of initial data can be calculated in an asymptotically flat initial data

hypersurface from the integral

Πiξi
(k) =

1

8π

∮

∞
(Kj

i − δj
iK)ξi

(k)d
2Sj. (3.32)

where ξi
(k) is a killing vector of the 3 metric γij. If ξi

(k) is the translational killing vector,

Eq. (3.32) represents the linear momentum in the direction of that killing vector, and

if it is a rotational killing vector, Eq. (3.32) represents the angular momentum. Even

though there are usually no real killing vectors involved, it is enough to use the

asymptotic translational and rotational killing vectors of the flat conformal metric to

show that P i is the physical linear momentum and Si the physical angular momentum

of the (one black hole) system. And, since the momentum constraint here is linear,

one can add several solutions of the form of Eq. (3.29) and get the total linear

momentum of the system just as a vector sum of the several P i. As shown in [122],
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the total angular momentum is not as easily computed but it is possible to compute

it without solving the Hamiltonian constraint.

Bowen- York data are not inversion symmetric. The problem can be pictured

looking at 3.3: As with the Misner data in the inversion symmetric topology a black

hole “sees” through the other black hole itself and again through the other itself again

and so on. This is taken into account by the conformal imaging procedure proposed

by Misner. It changes the extrinsic curvature by taking a sum over infinitely many

images a black hole “sees” from itself and the others1.

Cook used this conformal imaging procedure to create fully general 3d inversion

symmetric data [58]. As will be explained in more detail later, he used these data

to construct an evolutionary sequence of initial data sets in quasi circular orbits,

later called the Cook sequence. The construction of these data is complicated and

expensive. Therefore a simplification was needed to make numerical evolutions more

practical.

3.2.3 Puncture Data

Puncture (or Brand-Brügmann) data are a modification of the Brill-Linquist data [46]

to simplify the solution procedure. The construction starts with the same assumptions

as the Bowen and York data described last section (conformal flatness γab = δab,

maximal slicing K = 0). Thus the momentum constraint is solved analytically by

the same Bowen-York extrinsic curvature. However, the Hamiltonian constraint is

rewritten. Based on the Brill-Linquist solution, it is a reasonable assumption to set

the conformal factor to be:

Ψ =
1

µ
+ u, (3.33)

1The actual sum and all its constituent terms are quite complicate, and not treated here because
Misner data were not used in this thesis. All details can be found in [56].
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where

1

µ
=

N
∑

λ=1

mλ

2|~r − ~rλ|
. (3.34)

Substituting Eq. (3.33) into the Hamiltonian constraint yields:

∇̃2u = ν(1 + µu)−7 = 0, (3.35)

with

ν =
1

8
µ7ÃabÃ

ab. (3.36)

The point here is that the 1
µ

part is a solution of ∇2Ψ = 0 and therefore drops out of

the equation. One only has to solve for the regular part.

Eq. (3.29) shows that close to the singularities the term ÃabÃ
ab diverges no worse

than |~r−~rλ|−6 and µ as |~r−~rλ|. Therefore, ν vanishes like |~r−~rλ| at the singularities.

As long as the divergence of u is not worse than 1+O(r−1), the problem is well posed,

and a unique solution exists [46].

This setting simplifies the equation dramatically because the singularity is removed

and the solution is therefore regular (C2) and because it can be solved on R3 {O}

with no inner boundary needed.

3.2.4 Problems with These Data

It may seem that with the Bowen- York data, or the puncture data, at hand the initial

data problem for two black holes is solved. They both are methods for generating

general configurations with arbitrary linear and angular momenta, arbitrary sizes of

the black holes etc. However, both solution methods rely on strong assumptions.

They both set K = 0 and Mab = 0, and they both use a flat conformal metric. At

least this last assumption is expected to be false in physically realistic data sets. There

is no conformally flat slicing of the Kerr spacetime that is axisymmetric and has a

smooth limit if the Schwarzschild metric as the spin parameter goes to zero [74]. This

means that these methods cannot even generate a single Kerr black hole - the initial
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data set will always contain some radiation in addition to the spinning black hole.

For a single black hole, this radiation content can be visualized by subtracting the

analytic solution from numerical results. As shown for instance in [61], the radiation

content is different for different conformally flat data, and dependent on the rotation

parameter, but does not drop below 3.8% for Bowen-York data (and 3.5% for the

initial data set introduced in [61]). However, for two black holes there is no analytic

solution. And this spurious radiation content may completely disturb the form and

amount of physical gravitational radiation computed.

It should be noted here that it seems that the choice of the extrinsic curvature is

much more important than the choice of the conformal metric. Lousto and Price for

instance, could show that in the particle limit of the head-on collision of two black

holes (one black hole is seen as a perturbation of the other one), the error due to the

choice of conformal flatness is much smaller than the error due to the choice of the

extrinsic curvature [86]. This is also supported by Brügmann-Tichy’s recent puncture

data sequence [114].

The different decompositions mentioned in section 3.2 allow in principle for com-

pletely general solutions of the initial data problem. As mentioned before most of

the choices are made for mathematical convenience. But quantities as for instance

the tensor Mab of the transverse traceless decompositions are difficult to interprete

geometrically. Setting them to zero (or anything else) cannot be done on physical

grounds, but only for mathematical reasons. This makes it extremely complicate to

find astrophysically meaningful data.

Another facet of this problem is that it is quite difficult to compare different initial

data sets. In all approaches one can create systems of two black holes orbiting in

some path about each other. However, the form of the constraint equations differ,

the coordinates differ, the slicings differ etc. So there is no surprise that the solutions

differ. The problem arises when trying to rank the differences, or when trying to
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quantify them. With no correct solution at hand one cannot quantify the errors and

the content of spurious radiation can only be estimated roughly based on asymptotic

definitions of masses and momenta. There is no way to account for local differences

in the data sets.

3.3 Solving the Constraints (II): Thin Sandwich

As described in section 3.2.4, one of the problems of finding astrophysically realistic

initial data lies in the lack of geometrical interpretation of the variables used. They

are set mainly based on mathematical reasoning rather than physical requirements.

One way around this problem is to change the formalism in such a way that the used

quantities have physical or geometrical meaning. Such an approach is detailed in this

chapter.

Wheeler proposed a “Thin Sandwich” conjecture supposing that two consecutive

time slices can be used to determine the full 4 metric [91, 119]2. York modified the

ansatz to work for the conformal decomposition [124].

The idea is to take not only the data on one hypersurface into account but also

the transition to the next one. This leads to a fifth equation, stemming from the

evolution equation for the metric, as well as requiring the use of the gauge functions

(lapse and shift) as the unknowns of the equations.

The approach starts as before with the conformal split of the 3-metric:

γab = Ψ4γ̃ab. (3.37)

Now one can define

uab ≡ γ
1

3∂t(γ
− 1

3γab) (3.38)

ũab ≡ ∂tγ̃ab. (3.39)

2There have been counter examples for that [121]
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uab represents the traceless part of the time evolution of the conformal metric. In-

serting this into the evolution equation for the three metric (Eq. (2.12)) gives

uab = −2αAab + (L̃β)ab, (3.40)

where Aab is again the traceless part of the extrinsic curvature defined in Eq. (3.3)

and (Lβ)ab is the York vector potential (Eq. (3.5)) with now the shift as the vector

potential

(Lβ)ab = ∇aβb + ∇bβa − 2

3
γab∇cβ

c (3.41)

One of the important features of this treatment is the introduction of a conformally

rescaled lapse:

α̃ = Ψ6α (3.42)

Using this and solving Eq. (3.40) for Ãab gives

Ãab =
1

2α̃

(

(L̃β)ab − ũab
)

, (3.43)

the momentum constraint becomes

∇b

[

1

2α̃
(Lβ)ab

]

= ∇b

[

1

2α̃
uab
]

+
2

3
Ψ6∇aK, (3.44)

and the Hamiltonian constraint

8∇c∇cΨ − RΨ + AabA
abΨ−7 − 2

3
KΨ5 = 0. (3.45)

To summarize the results: This procedure starts with free data γab, uab, α, and K and

solves Eqs. (3.43), (3.44), and (3.45) for Ψ, βa, and Aab.

This decomposition is a purely geometrical analysis, and all used terms have mean-

ings that can be interpreted geometrically. Unlike in the former decompositions,

where heavy use of mathematical properties was made, and the reductions of the ten-

sors cannot easily be interpreted, here all that is used beside the metric and extrinsic

curvature is the shift vector, the (rescaled) lapse function, and the time derivative of

the conformal metric.
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York, who proposed this decomposition, compared this ansatz with a Lagrangian

method in contrast to the transverse traceless decompositions which are closer to a

Hamiltonian approach for their use of the canonical variable Kab (which is closely

related to the real canonical conjugate of the metric defined in Eq. (2.9).

In a recent paper [98] York and Pfeiffer outlined the connection between this Thin

Sandwich decomposition and the transverse traceless decompositions by introducing

an arbitrary weight into the latter, and showing that if this weight is taken to be

the densitized lapse and the shift of the Thin Sandwich method is taken, the two

decomposition agree. Nevertheless, it is only in the Thin Sandwich approach all the

ingredients are geometrically motivated.

The Thin Sandwich approach forms the basis of the “quasi-killing-vector” data,

outlined in chapter 6.

3.4 Other construction methods

None of these decompositions is restricted to use a flat conformal metric. But since

the equations simplify so much when using γab = Ψ4δab, it is the most widely used

choice, even though there is no conformal slicing of the Kerr metric [74].

Alternatives to the conformal flatness assumptions have been proposed. The fol-

lowing sections will report on some of them.

3.4.1 Superposed Kerr Schild data

Matzner et al. [87] suggested the following choice of a conformal metric:

γab = δab + 2H1l1al
1
b + 2H2l2al

2
b (3.46)

The idea stems from the Kerr-Schild metric for a single black hole, which has the

form gµν = ηµν +2Hlµlν ,where ηµν denotes the Minkowski metric, H a scalar function

of the coordinates, and lµ a null vector. It is, depending on H and lµ, the solution
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of a rotating or non rotating black hole. The form of the metric remains unchanged

under Lorenz boosts. So it is very easy to construct a very general black hole using

this metric.

Based on this form of the single black hole, Matzner et al. constructed a binary

black hole system with the spatial part of Eq. (3.46) as the metric. But since it is

not a solution of the constraints, one has to go through the York solution procedure,

take this metric as a conformal one and solve for the conformal factor.

The Kerr-Schild ansatz could cure the problem of the conformal flatness condition,

however, it is not known yet whether it will create less artificial radiation, and it

comes at a very high cost: all differential operators now include, via the metric, the

singularities of the system. That makes it a mathematically ill conditioned procedure.

Neither existence nor uniqueness has been shown.

For the extrinsic curvature, Matzner et al. used a similar ansatz:

Kab = K1
ab +K2

ab, (3.47)

where the K i
ab are the extrinsic curvatures of the single black holes. The four dimen-

sional metric for one black hole is used to compute the extrinsic curvature for that

black hole, and the total extrinsic curvature is the sum of the individual extrinsic

curvatures. Diener [65] has taken another approach and used the extrinsic curvature

of the 4D metric

γµν = ηµν + 2H1l1µl
1
ν + 2H2l2µl

2
ν. (3.48)

to construct the data. He was able to find a solution using a multi-grid elliptic solver

on a two dimensional (cell-centered) grid. As mentioned above, Matzner et al. found

a solution using excision. This rid them of the singularities in the operators, but they

had to use an additional refinement to make it work. To solve the constraints, they

used an “attenuation” function that blended out the other black hole near the first

one (and vice versa). So the scalar function H1 is multiplied by a smooth enough
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function that is one near the first black hole and zero near the other. H2 is treated

analogously around the second black hole. This way they ended up with the following

conformal metric:

γab = δab +B1H1l1al
1

b + B2H2l2al
2

b (3.49)

and found a solution for the conformal factor using the Hamiltonian constraint. but

as was shown later this solution depends on the size of the excision region, resulting

from the ad-hoc choice of the boundary condition [97].

3.4.2 Post-Newtonian based data

Another approach is taken by Tichy et al.[115]. They use a metric and extrinsic

curvature given by the Post-Newtonian approximation (mentioned in the introduction

as an approximate method to solve Einstein’s equations) as the conformal objects.

(Data of the 2nd Post-Newtonian order were used.) This is a very promising ansatz

since the Post-Newtonian approximation is believed to be very accurate (at least for

well separated black holes) and physical interpretation of this data is clear.

However, the Post-Newtonian approximation is not solving Einstein’s equations.

The PN metric was only used as a conformal metric. Still the constraint equations

had to be solved. The solution is not Post-Newtonian anymore. Actually the confor-

mal factor (encoding the difference between the PN data and the solution to Einstein’s

equations) diverges at the singularities introducing large changes to the data. There-

fore advantages like interpretability are lost.

A completely new way of constructing initial data, not relying on York’s conformal

decomposition, is described in the following section.

3.5 Nonconformal Data

Based on earlier work [37] that first introduced the nonconformal ansatz using the

Kerr-Schild form and solved the equations for a particular perturbation of Schwarzschild,
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a new set of initial data was solved within the work for this thesis in collaboration

with N. Bishop and F. Beyer. The motivation was to find an ansatz for which a

variety of solutions can be constructed as the number of possible solutions turn out

to be limited for the ansatz used in [37]. The following ansatz satisfies this condition.

It leads to an nonlinear elliptic equation for one unknown, which has been solved for

a perturbed Schwarzschild black hole and will in the near future be solved for two

black holes.

The idea is to use a modified Kerr-Schild ansatz for the three metric. To simplify

the treatment, the first analysis was done with the additional requirements

Kab = 0 and R(4) = 0. (3.50)

Setting the four dimensional curvature scalar to zero neglects solutions containing

matter. Setting Kab to zero (as explained earlier) is done for mathematical conve-

nience. Physically it leads to a time symmetric initial slice, which in turn means that

the black holes are momentarily at rest. In a binary black hole case, this corresponds

to a head-on collision, and to get astrophysically more realistic data this assumption

needs to be relaxed.

The ansatz for the three-metric is:

γab =
δab + 2V kakb

1 − 2V
, (3.51)

with δab being the Euclidian three-metric, V (r, θφ) a scalar field and ka a vector that

is represented in this treatment as the derivative of another scalar field φ:

ka =
φ,a

√

δabφ,aφ,b

. (3.52)

Using spherical coordinates and an axisymmetric setting (xi = (r, θ, ϕ), dij =

diag(1, r2, r2 sin2 θ), and with V and Φ depending only on r and θ)) one ends up with

the following form of the Hamiltonian constraint:

c20V,rr +c11V,rθ + c02V,θθ + c5 (V,r)
2 + c4V,rV,θ
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+c3 (V,θ)
2 + c2V,θ + c1V,r + c0V = 0. (3.53)

The coefficients are functions of r, θ, V , Φ and higher derivatives of Φ. Some of the

coefficients are very long expressions, and so here only the coefficients of the principal

part are given.

c20 = −2
(1 − 2V ) Φ,θ

2 + 2 r2 Φ,r
2

(1 − 2V )
(

Φ,θ
2 + r2 Φ,r

2
) (3.54)

c11 = −4
(1 + 2V ) Φ,θ Φ,r

(1 − 2V )
(

Φ,θ
2 + r2 Φ,r

2
) (3.55)

c02 = −2
2 Φ,θ

2 + r2 (1 − 2V ) Φ,r
2

r2 (1 − 2V )
(

Φ,θ
2 + r2 Φ,r

2
) (3.56)

The determinant of the principal part is

∆ = c20c02 −
1

4
c211 =

8

r2 (1 − 2V (r, θ))
,

showing that the equation is elliptic provided V < 1/2.

Analysis

Schwarzschild

The first task was to find an explicit representation of the Schwarzschild geometry

that satisfies the ansatz (Eq. (3.51)). This was used later for a number of purposes,

including the setting of boundary data in more general situations, and as the zeroth

order solution about which a perturbed Schwarzschild solution can be constructed.

Beginning with the Schwarzschild 3-metric in isotropic coordinates (r̄, θ, φ), the

3-metric is given by

ds2 =
(

1 +
m

2r̄

)4 (

dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ2
)

(3.57)

with the extrinsic curvature of the space like initial slice Kij = 0 one can obtain the

form of Eq. (3.51) by requiring

(

1 +
m

2r̄

)2

dr̄ = dr. (3.58)
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This is easily integrated to give the coordinate transformation

r = r̄ +m ln
2r̄

m
− m2

4r̄
+
m

2
, (3.59)

where the integration constant has been chosen so that the event horizon is at r =

r̄ = m/2. Then, in (r, θ, ϕ) coordinates, the metric satisfies ansatz (3.51) with

φ =
1

r
, V (r) = VS(r) ≡ 1

2

(

1 −
(

1 +
m

2r̄

)−4 r2

r̄2

)

. (3.60)

On the event horizon at r = m/2 one has

V =
15

32
, (3.61)

and one can make an asymptotic expansion to find

lim
r→∞

=
m

2r

(

1 − 2 ln
2r

m

)

. (3.62)

Perturbed Schwarzschild

The knowledge of the Schwarzschild solution can be used to find a solution of a

perturbed Schwarzschild black hole. One can set Φ = 1/r and use a simple inner

boundary condition

V
(

r =
1

2
, θ
)

=
15

32
+ ε Pn(cos θ) (3.63)

to perturb the black hole where Pn is the n-th Legendre polynomial. In principle, the

size of ε is only limited by the condition V < 1/2 to preserve ellipticity of Eq. (3.53),

so

|ε| < 1

32
.

As an outer boundary condition V (r, θ) → VS(r) as r → ∞ was set even though it is

the true value only at infinity.

Now one can proceed in two ways. The first is to linearize, that is ignore all terms

of order ε2 in Eq. (3.53). Doing so, the solution can be written as an infinite sum

of eigenfunctions. A second method to is to solve the elliptic problem Eq. (3.53)
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numerically, and use the linearized solution as an analytic solution against which

the numerical method can be validated. The reason for doing this is that in future

work, a reliable numerical method will need to be applied to problems for which an

approximate analytic solution cannot be found.

Linearized Analysis

If the perturbation introduced in Eq. (3.63) is small enough, i.e. ε � 1, it is a good

approximation to neglect terms of order ε2 and higher. Limits on ε will be given later.

The ansatz

Φ = 1/r, V (r, θ) = VS(r) + εwn(r)Pn(cos θ) (3.64)

separates the linearized Hamiltonian constraint, and one is left with an ordinary

differential equation for wn(r)

d1w
′′
n(r) + d2w

′
n(r) + d3(n)wn(r) = 0 (3.65)

with the coefficients

d1 = r2 (−1 + 2VS(r))2 (3.66)

d2 = − r (−1 + 2VS(r)) (3 − 6VS(r) + 7 r V ′
S(r)) (3.67)

d3(n) = 1 − n(n + 1)

2
+ (3n(n + 1) − 8) VS(r) (3.68)

−2 (3n(n+ 1) − 10) VS(r)2 (3.69)

+4 (n(n + 1) − 4) VS(r)3 + 7 r2 V ′
S(r)

2
. (3.70)

The fact, that the Schwarzschild solution VS(r) (Eq. (3.60)) is itself a solution of the

Hamiltonian constraint, has been used. Now one can define the functions wn(r) to

be those solutions of Eq. (3.65) which satisfy the boundary conditions

wn(r =
1

2
) = 1, wn(r → ∞) = 0. (3.71)

50



Of course, a general solution to the perturbed Schwarzschild problem can be con-

structed by summing the eigenfunctions, i.e.

V (r, θ) = VS(r) + ε
∞
∑

n=1

anwn(r)Pn(cos θ) (3.72)

where the an are arbitrary constants.

In order to show that the 3-metric defined by Eq. (3.64) is not conformally flat,

one needs to prove that the Cotton-York tensor [95, 117]

Yijk = Rij;k − Rik;j +
1

4
(R,jgik − R,kgij), (3.73)

does not vanish identically. If only the first eigenfunction is present (i.e., if n = 1)

then the York tensor is zero to first order in ε; but, for example,

Y112 = ε
2 − n(n+ 1)

4 r2
wn(r)P

′
n(cos θ).

So it is proven that the eigenfunctions with n > 1 do not represent a conformally flat

geometry.

Numerical Method

The second proposal was to solve Eq. (3.53), subject to the boundary condition

defined by Eq. (3.63) and

V (r, θ)|r=rOB
= VS(r)

using VS(r) given by Eq. (3.60), with a standard numerical elliptic solver.

Due to the symmetry of the problem, one can impose the additional boundary

conditions

∂V

∂n

∣

∣

∣

∣

∣

θ=0,π

= 0

where n is a vector normal to the θ = 0, π-surfaces. For simplicity these conditions

were implemented at θ = 0+η, π−η with η � 1 and of the order of magnitude of the

accuracy up to which Eq. (3.53) is to be solved. This is a common procedure to avoid
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numerical problems at the singular points of the equation (θ = 0, π) -for example, the

same situation arises in the case of the Laplace equation in spherical coordinates.

To solve non-linear elliptic PDEs, the standard Jacobi method was used. For a

successful solve, the choice of the initial guess for V (r, θ) is crucial. It turns out to

be sufficient to use Eq. (3.60) plus a Legendre perturbation of a given order n with

linearly decreasing amplitude from the inner to the outer boundary consistent with

the boundary conditions above. To compute VS(r) for the initial guess numerically,

Eq. (3.59) was solved for r̄ by a numerical integration of Eq. (3.58) which was then

substituted into Eq. (3.60) - the problem being that Eq. (3.59) is explicit in the

wrong direction.

The computations were done using the Cactus Computational Toolkit and the TAT-

Jacobi elliptic solver [111], which uses the standard Jacobi solution method and the

boundary conditions were implemented using second order finite differencing.

The convergence of the method is very slow, mainly due to non-linear terms in

Eq. (3.53) which are dominant close to the horizon. So in a first run of the elliptic

solver the residual was multiplied by (1− 2V ), which is small near the horizon. This

gives the solver the opportunity to get an accurate solution everywhere else before,

in a second run, the original equation was solved. By means of this technique the

convergence speed was significantly increased.

Results

As a start the simplest non conformally flat case was solved numerically: a perturba-

tion with a n = 2 Legendre polynomial. The outer boundary was set to rOB = 10 and

the amplitude to ε = 0.005. The code was shown to exhibit second order convergence

(compare table (3.1)). However, it was also shown that the solution of the linearized

equation is not the limit of the convergence sequence for infinite resolution. To un-

derstand why this is the case the higher terms of the expansion were investigated. It
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height Nr Nθ ∆r ∆θ final resid. of Eq.(3.53)

low 97 33 0.098 0.095 4.0 · 10−7

medium 193 65 0.049 0.048 1.0 · 10−7

high 385 129 0.025 0.024 2.5 · 10−8

Table 3.1: Results of convergence test of nonconformal data.

turned out that close to the horizon they become large. The solution of the linearized

Hamiltonian constraint Eq. (3.65) was substituted into the full constraint Eq. (3.53)

and plotted in Fig. (3.5). Additionally, the plot shows the residual for the case that

ε is smaller by a factor of 10 (ε = 0.0005). Although the linearized solution is not

accurate close to the boundaries for ε = 0.005, the residual shows the right quadratic

scaling for decreasing ε due to second order terms. This gives us a measure of how

small ε should be in order to obtain a desired accuracy. The same computations were

repeated for different positions of the boundaries and different n recovering conver-

gence as before. Fig. (3.6) shows the linearized solutions – i.e. full solutions provided

ε is small enough – for different n.

3.6 Summary

This chapter described the most important methods to solve the constraint equations.

It introduced the York procedure, Bowen-York data, Misner data, and Puncture data.

It explained some of the problems these data have (especially mentioning the problem

of interpretation of the used variables), and introduced the Thin Sandwich data.

The Thin Sandwich data are geometrically motivated and all used variables have a

geometrical interpretation.

A new method presented in this section represents a completely new way of finding
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Figure 3.5: Residuum of Eq. (3.53) for the linearized solution. The rescaled fine
resolution line matches almost perfectly. Even though the residuum becomes larger
close to the boundary, the error converges away with second order.

initial data for Einstein’s equations. Since it is not based on a conformal decom-

position it is by construction different from everything build to date. This method

provides data that are genuinely different (not conformally flat) from the previously

described ones. It was shown that with this construction it is possible to construct

a non-conformally flat perturbation of the Schwarzschild solution. This numerically

found solution could be compared with a linearized solution and it was shown to agree

to a high degree.

The idea how to construct binary black holes with this method was explained as

well. Preliminary tests have shown that this method works. But to make use of

this new ansatz a lot of work remains to be done. The boundary condition at the
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Figure 3.6: Linearized solutions for different n

symmetry plane between the two holes is very complicate to implement. Especially

since it includes a point where the scalar field V vanishes. This creates a coordinate

singularity that has to be dealt with. As a major aim there stands, of course, methods

for the creation of initial data for the binary black hole problem.

The remainder of this thesis concentrates on Puncture and Thin Sandwich data.
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Chapter 4

Methodology

Before coming to physical problems, this chapter as an interlude explains briefly

some details of the numerical treatment of the initial data problem. There are many

complications, pitfalls and possible errors when using numerical methods, but as

mentioned above Einstein’s equations are by far too complicate to be solved in general

analytically. Additionally the physical quantities are explained that will be needed

in the following chapters including a geodesic distance measurement developed and

implemented for this thesis.

4.1 Finite Differencing

The basic method to solve the various differential equations appearing when solving

Einstein’s equations numerically is called finite differencing. Here a differentiation

is approximated by a finite difference. This can be seen best looking at the Taylor

expansion of a function at a point that is only a small distance (h) away from the

point x:

u(x+ h) = u(x) +
1

1!
hu′(x) +

1

2!
h2u′′(x) +

1

3!
h3u′′′(x) + . . . (4.1)

Cutting this series at the first order and solving for u′(x) one gets

u′(x) =
u(x+ h) − u(x)

h
+ O(h). (4.2)

To get a higher order approximation one can write down the Taylor series for a point
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“left” of x

u(x− h) = u(x) − 1

1!
hu′(x) +

1

2!
h2u′′(x) − 1

3!
h3u′′′(x) + . . ., (4.3)

subtract it from Eq. (4.2), and cut the series at third order. One gets

u′(x) =
1

2h
(u(x+ h) − u(x− h)) + Ø(h2). (4.4)

To get the second derivative one can add Eqs. (4.3) and (4.4), omit terms of order

h4 or higher and get

u′′(x) =
1

h2
(u(x+ h) − 2u(x) + u(x− h)) + Ø(h2). (4.5)

Another way to solve differential equations uses the so-called spectral methods.

Here the solution (say u) is expanded into a series of known functions fk (modern

versions usually use Chebychev polynomials):

u =
∞
∑

k=0

akfk. (4.6)

Inserting this into the differential equation L(u) = 0 will turn it into an equation for

the ak:

L(u) = 0 (4.7)

L(
∞
∑

k=0

akfk) = 0 (4.8)

ak

∞
∑

k=0

L(fk) = 0. (4.9)

With these ak the original equations is solved at the so-called collocation points. It

can be shown that the error between these points will decrease with the number of

points exponentially if u is C∞.

4.2 Numerical Error Estimates

4.2.1 Convergence

The previous section shows the immediate problem numerical methods always have:

they are approximations. The results of the numerical treatment of the equations, u
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will in general differ from the analytic solutions ū (which are unknown). The error,

e, will depend on the resolution of the numerical treatment. To ensure that numerics

does the right thing it is necessary that the error will converge to zero when the

resolution n (interpreted as number of points per interval) will become infinite. In

the work for this paper all codes (especially the Cactus code) are made to converge

at least to second order in n. This means that a function ū being a solution to a

differential equation is approximated by a function un, which is a solution of the

finite differenced version of the same differential equation. The error e(n) is assumed

to depend on the resolution such that one can write:

ū = un + e(n)

ū = u2n +
1

4
e(n)

ū = u4n +
1

16
e(n) (4.10)

. . .

ū = ukn +
1

k2
e(n).

A “convergence test” can be carried out by testing only three of these equations. One

can, for instance, compute the convergence factor η defined by:

η = ln

(

ucoarse − umedium

umedium − ufine
− χ

)

. (4.11)

This gives the value of the convergence exponent (which was assumed to be two

in Eq. (4.10)). Let ufine be a numerical solution to a finite difference equation

with the resolution fine, umedium the solution of the same equation taken with a

resolution of medium = χ× fine,and finally ucoarse the solution of the equation with

the resolution coarse = χ×medium. Then η as defined by Eq. (4.11) will give the

rate of convergence of the solution scheme and/or the implementation. It provides a

very good check for the quality and validity of an implementation.
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4.2.2 Constraints

Even if the numerical errors will converge away, they can ignite other errors that can

grow and eventually make the code crash. One important example is the constraint

equations. As said above, analytically the Bianchi identities ensure that a solution

of the constraints is a solution of the evolution equations. However, a small error

will not necessarily remain small after some evolution. In general it will grow. Even

strongly hyperbolic systems allow exponential growth of errors.

Intensive research is underway on how eliminate such growth. One possibility is

to try to change the equations in order to make the constraint surface (the surface

in super-space of all possible 3d-metrics and extrinsic curvatures on which the con-

straints are solved) an attractor. Of course Einstein’s equations can only be changed

by terms that are zero analytically, otherwise one would change the theory. One can

for instance add multiples of the constraints to the evolution equations. These change

the principle part, which can influence growing modes. There has been a detailed

investigation [106, 107] on what term would have what behavior on the equations.

However, these investigations have been done using the linearized version of Einstein’s

equations. To make this useful for real numerical relativity, many tests are necessary.

Many such tests are undertaken now in the community and at a meeting in Mexico

a minimal set of tests was proposed [9].

All evolutions done for this thesis are “free evolutions”. The constraints are not

enforced. This makes them a good measure of the accuracy of solutions- if the con-

straints are significantly non-zero then the simulations are no longer solutions of

Einstein’s equations.
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4.3 Elliptic Solvers

Another issue that often arises when doing numerical relativity is the solution of

elliptic solvers. Not only are the constraint equations elliptic but as described above,

gauges can also lead to elliptic equations, eg. the maximal slicing or the Γ-freezing

shift.

Whereas hyperbolic equations are solutions to initial boundary value problems, in-

volving propagation of data with finite velocities, elliptic equations must be solved

instantaneously over an entire slice so that boundary conditions become crucial. Solv-

ing all elliptic equations requires expensive iterative relaxation methods. One starts

from an initial guess that will be changed in direction of the analytic solution. This

method will - depending on the actual implementation - converge sooner or later to

a value that with increasing resolution converges to the analytic value. But practical

methods tend to slow down dramatically with an increasing number of grid points.

To speed up the process, a multi-grid method has been introduced. It was noticed

before that high frequency parts of solutions settled very quickly to a solution whereas

lower frequencies modes did so very slowly. Coarsening the grid will effectively raise

the frequency of the modes speeding up the convergence of the low frequency modes.

This, by interpolating back to the finer grid, gives a much faster convergence to the

solution, especially when the number of grid points is very high.

The elliptic solver used for the work for this paper (except for the non conformal

data that will be introduced later) is a multi-grid solver called BAM (“Bifunctional

Adaptive Mesh” [48]), written by Bernd Brügmann. It uses regular iterative methods

(like Gauss-Seidel or the like) to solve the equations on each grid.
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4.4 Boundary Conditions

4.4.1 Outer Boundary Condition

A problem of the treatment of Einstein’s equations with finite differences is that the

domain one can compute on is finite. This introduces a boundary at the edge of the

grid. Looking at Eq. (4.5) for instance one sees that if x is a boundary point the

point x + h does not exist. One has to use some value instead. The question what

value to use is under constant research because firstly it is far too complicate to be

solved rigorously but secondly it is very important because any error introduced at

the boundary will travel inwards and disturb the evolution.

One possibility to find a boundary condition is to idealize the system and assume

that the boundary is put very far out, where the spacetime can be approximated very

well with flat space carrying spherical waves. These waves should then travel freely

and leave the grid unreflected. Assuming a fall-off of 1/r and not allowing waves to

enter the grid one can impose the following outgoing radiation (Sommerfeld) boundary

condition:

f = f0 + u(r − vt)/r, (4.12)

where f0 is the asymptotic value of a given dynamical variable (typically 1 for the

lapse and diagonal metric components, and zero for everything else), and v is a wave

speed. This speed can be safely assumed to be the speed of light, v = 1, for all

the dynamical variables. However, the gauge variables can easily propagate with a

different speed implying a different value of v.

In the evolutions done for this thesis, the boundary condition Eq. (4.12) was not

use as it stands, but rather in its differential form:

∂tf + v∂rf + v (f − f0)/r = 0, (4.13)

which is than finite differenced to second order in both space and time and applied to
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all dynamic variables (with possible different values of f0 and v) at all outer bound-

aries. Although this equation is for scalars it is applied to all functions regardless

of some being tensor components. Also this boundary condition is violating the

constraints which leads to first order errors that eventually contaminate the grid. To

reduce the problem the boundaries are moved as far into the linear regime as possible.

4.4.2 Inner Boundary Condition

One of the great problems when dealing with black holes numerically is the presence

of singularities. As mentioned above one way to avoid them is to use singularity

avoiding slices, such as the maximal slices (with vanishing mean curvature). Another

is by excision. It is conjectured that every singularity is surrounded by an event

horizon inside which spacetime is causally disconnected from the exterior [96]. So in

principle it would have no influence on the evolutions if the interior was just cut away.

This means in practice to place a boundary somewhere inside the horizon, which in

turn creates the problem of choosing a correct boundary condition. One could naively

think that the boundary does not matter because it is inside the event horizon and

therefore causally disconnected. This is true, however, not every boundary condition

will lead to a numerically stable evolution. Some problems produce gauge modes,

which can travel faster than light. It should be noted that though the physical light

cone may be causally disconnected from the exterior, the numerical light cone may

still escape the horizon.

Following an idea by Unruh Thornburg was the first to implement such a method

in 1 dimension and Seidel et al. [104] made use of this scheme in numerical evolutions.

In all the evolutions done for this thesis a simple excision method was used [6].

That is:

• Safely inside the horizon a “Lego sphere” is excised, a sphere approximated
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Figure 4.1: Lego sphere. The horizon surface is approximated by a sphere along the
grid lines.

along grid lines. This actually generalizes [6], where a cube was excised.

• A simple boundary condition is used at the sides of the cube: time derivatives

are copied from their value one grid-point out along the normal direction.

• Centered finite differencing is used (ignoring the causal structure).

This simple technique worked extremely well in all studied cases.

4.5 Measurement of Physical Quantities

This section describes the quantities that are to be extracted during initial data

computations as well as during the long evolution runs. The following list is by far

not complete, it merely explains the quantities used in this paper. Other things may

also be interesting, as for instance waves, but could not be accurately extracted for

the given runs and thus are not mentioned here.
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4.5.1 Masses and Momenta

The first quantity to measure is certainly the mass of the system. This is important

not only by itself (what mass has the system that is described?) but also as a

significant measure of how accurate the evolutions are and how much energy has left

the computational grid through radiation. However, in General Relativity there is no

local definition of mass. One can only define a global quantity, as was done already

in the original ADM paper [25]:

MADM =
1

16π
lim
r→∞

∮

gijgmn(gin,j − gij,n)
√
gdSm. (4.14)

However, the mass defined that way is given at spatial infinity. But due to compu-

tational limits and the methods used here, it has to be calculated at a finite radius

and the calculation by the above definition of the ADM mass converges very slowly

with increasing r. Note that technically MADM should not change with time.

Ó Murchadha and York in [94] modified this expression using the variables in York’s

conformal decomposition method. For a conformal metric which falls off fast enough

with a radius, their expression for the ADM mass is

MY = − 1

2π

∮

∞
DiψdS

i, (4.15)

with Ψ being the conformal factor. Eqs. (4.14) and (4.15) are equivalent in the limit

of infinite radius. But it turns out that for a Schwarzschild black hole in isotropic

coordinates, Eq. (4.15) gives the correct mass already at a finite radius.

Another way of calculating the mass is the so-called Schwarzschild mass. To define it

one assumes that beyond some radius the spacetime approximates the Schwarzschild

solution. This mass is obtained by first finding the physical (Schwarzschild) radius

R of a coordinate sphere, and then finding the correspondent metric component grr

which is the average over the coordinate sphere. The mass is then defined by:

MS =
r

2
(1 − 1

grr
), (4.16)
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which converges very rapidly with increasing r.

Yet another way of defining the mass was defined by Komar [83]. Trying to assign

a senseful conserved quantity to every infinitesimal coordinate transformation ξ i and

requiring this quantity to be generally covariant he defined an energy flux vector

P i(ξ) = 2(ξi;l − ξl;i);l. (4.17)

This vector satisfies the covariant conservation law

Pm
;m = 0 (4.18)

and thereby assures the conservation of the total energy

P (ξ) =
1

2κ

∫

Pmdsm. (4.19)

For a system that is asymptotically Schwarzschild at spatial infinity it turns out that

the energy measured at infinity is

MK ≡ P (δi
4) = Mc2. (4.20)

A useful property of this mass is that it agrees with the ADM mass if and only if the

spacetime is stationary and asymptotically flat and the killing vector is orthogonal to

the slice [35], which gives a principle to find (quasi) circular orbits as will be discussed

in section 6.2.3.

For this paper the ADM mass was calculated according to Eq. (4.14) because the

other mass definitions are not always applicable. However, due to the slow conver-

gence a special treatment was used: The ADM mass as defined by Eq. (4.14) was

computed at several finite radii. A polynomial was fit and this polynomial was used

to extrapolate the value at infinity. This was done using a second order polynomial

in the case of the ADM mass, and a third order polynomial in the case of the ADM

angular momentum. This procedure is very accurate as was shown in [93] and results

can be seen in Fig. (4.2). Plotted are 2nd and 3rd order polynomial fits for the ADM
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mass of a Kerr black hole and 3rd and 4th order polynomial fits of the ADM angular

momentum. These plots demonstrate that in the mass case a second order polynomial

fits the numerical values just as good as a third order one. In the case of the angular

momentum the difference between second and third order extrapolations is about 1%

but a 4th order polynomial did not change the results significantly. Therefore for the

extraction of the ADM mass a second order polynomial (Eq. (4.21)) was used and a

third order polynomial (Eq. (4.22)) was used for the ADM angular momentum.

A0 + A1
1

r2
+ A2

1

r2
= 0 (4.21)

A0 + A1
1

r2
+ A2

1

r2
+ A3

1

r3
= 0. (4.22)

For systems of rotating or binary black holes it is natural to ask for the angular

momentum. Using the spirit of the ADM mass definition one can create a definition

of a momentum depending on a killing vector:

Πiξi
(k) =

1

8π

∮

∞
(Kj

i − δj
iK)ξi

(k)d
2Sj. (4.23)

0 20 40 60 80 100
radius

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

D
M

numerical values

A0 + A1 / r + A2 / r
2

A0 + A1 / r + A2 / r
2
 + A3 / r

3

0 50 100 150 200 250 300 350 400
radius

1.7

1.75

1.8

1.85

1.9

1.95

2

J

numerical values

A0 - A1 / r + A2 / r
2

A0 - A1 / r + A2 / r
2
 - A3 / r

3

Figure 4.2: Approximations of ADM Mass (left) and angular momentum (right) by
second order and third order polynomials, respectively. The values are measured at
several radii and extrapolated using the listed polynomials.

66



If the vector ξ is a translational killing vector the momentum is the linear momen-

tum of the system. In case ξ is rotational, this defines the angular momentum.

Again, since the ADM momenta are defined at infinity, the method of fitting a

polynomial was applied. As mentioned above due to the faster falloff of the extrinsic

curvature used to compute the momenta a third order polynomial had to be used

(compare again Fig. (4.2)).

4.5.2 Horizons

The presence of a horizon defines the location of a black hole. There are two different

notions of horizons one has to acknowledge. There is of course the event horizon,

the closed surface surrounding a singularity (assuming cosmic censorship holds) from

within which no light ray will escape to infinity nor will it hit the singularity. However,

this idea is a global one. Only at null infinity can one tell whether light has arrived.

On a numerical grid (and without the use of conformal rescaling methods) there is no

way to reach infinity (neither temporal nor spatial). Additionally one would have to

know the entire future solution of the spacetime to tell whether a given light ray will

reach infinity. Therefore the finding of event horizons can only be done approximately

and only after the entire numerical evolution has finished. Several approaches have

been made to find an event horizon numerically. But the approach of [19] turned

out to be the most efficient. The idea was to use the full numerical evolution and

evolve outgoing null geodesics backwards in time (turning them to ingoing geodesics).

For these null geodesics the event horizon is an attractor such that they converge

exponentially and track the event horizon very accurately. Very recently Diener [64]

implemented a procedure generalizing this idea to 3d. Using the apparent horizon as

initial guess he could produce very accurate results already.

Another idea is to use a local quantity, one that can be computed at every timeslice

while the simulation is going on. This is quite important for numerical purposes since
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a number of tools rely on the location of the horizon, as for instance the excision

technique. Given a timeslice, one can define a “marginally trapped surface”, a two-

surface whose outward pointing normal vectors nb have zero expansion. Using the

usual 3+1 quantities given at the slice the expansion Θ can be computed as:

Θ := ∇bn
b +Kabn

anb −K. (4.24)

An “apparent horizon” (AH) now is defined as the outermost marginally trapped

surface. The surface at which all light cones point inwards. There can be several

different trapped surfaces nested inside each other. It is proven [80] that an apparent

horizon is always contained inside an event horizon and that they agree if and only

if the spacetime is stationary. Thus it is safe to excise inside an apparent horizon,

as one is always excising inside an event horizon which is causally disconnected from

the outside.

Eq. (4.24) is an elliptic equation. Until very recently the Cactus toolkit had two 3D

AH finder algorithms, one being a minimization algorithm [84, 21, 52, 5] and other

one a curvature flow algorithm [5, 92, 82, 79]. Both of these start from a big sphere

floating inwards to settle at a solution of Eq. (4.24). This usually takes very long,

that long actually that it was not practical to use at every time step. Within the

preparation of this paper, a new horizon finder was implemented [112]. This is using

a method directly solving the elliptic equation. Starting with a good initial guess this

method is very much faster, allowing for a use at every time step. This was crucial for

example for the use in the Meudon data evolutions that heavily depend on tracking

the horizon surfaces closely.

Quite a number of physically interesting quantities can be extracted from apparent

horizons. First there is the irreducible mass. The area of a Schwarzschild black hole’s

event horizon AEH is a monotonic function of its mass. The irreducible mass can be
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defined as a function of the area [53, 54]:

Mirr =

√

AEH

16π
. (4.25)

By analogy one usually defines an apparent horizon mass:

MAH =

√

AAH

16π
(4.26)

and to include rotation this is generalized to:

M2
AH =

AAH

16π
+

4πJ2

AAH

, (4.27)

where J is the total angular momentum. This latter expression is sometimes referred

to as the Christodoulou mass [53].

With Hawking’s area theorem (the area of a black hole cannot decrease), also called

second law of black hole thermodynamics, it is understood that this mass is the min-

imum that will not decrease with time. It is therefore possible to define a maximum

radiation content (MRC) of a spacetime. This is the difference of the total energy

a spacetime contains (as measured by the ADM mass) and the irreducible mass,

normalized to the ADM mass:

MRC =
MADM −Mirr

MADM

. (4.28)

The total energy radiated away during an evolution cannot be larger than this number.

Another number that is important and can be extracted from the apparent horizon

is the ratio of two different circumferences. For a rotating system it is possible to

define an equatorial circumference ce of a black hole and a polar circumference cp

(One can actually compute two polar circumferences, one with φ = 0 and another

one with φ = π/2. This way one can also compare the distortion of the holes along

due to other influences as for instance a second black hole.). To do so one introduces

coordinates x̄i = (θ, φ) on the apparent horizon surface and defines an induced two

dimensional metric gij via

gij = γab
∂xa

∂x̄i

∂xb

∂x̄j
(4.29)
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Using this metric one can than define the area of the horizon by setting

AAH =
∫ √

gdx̄idx̄j (4.30)

and the circumferences by

cp1 =
∫

φ=0

√

gijx̄ix̄j (4.31)

cp2 =
∫

φ=π/2

√

gijx̄ix̄j (4.32)

ce =
∫

θ=π/2

√

gijx̄ix̄j. (4.33)

The area definition can be used to compute the masses mentioned in Eqs. (4.26) and

(4.27).

In the non-rotating (Schwarzschild) case these agree and for growing rotation they

separate increasingly. From their (normalized) ratio one can estimate the degree of

rotation. Moreover, as was seen in many cases and is assumed to be always true, for

distorted black holes this ratio oscillates with the quasi-normal frequency of the black

hole obviously giving insight into real physical processes [19].

4.5.3 Horizon Distances

Many papers on initial data rely on one or another notion of distances of the black

holes. For evolutionary sequences it is necessary to talk of some distance that becomes

smaller as the data evolve. However, as is well known an unambiguous notion of a

distance does not exist. Usually what is taken as the physical distance between two

black holes is the separation of the horizons along a straight line connecting the two

singularities. Such a line need not to be a geodesic. So it could well be too long a

line.

A distance measurement which measures along a geodesic was implemented that

shoots a particle from the center of symmetry into one of the holes and computes the

length of this geodesic from beginning until it hits the horizon (the metric is taken to
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Figure 4.3: Distance measurement. From the center of symmetry (in this case the
origin) geodesics are shot into the black hole. The plot shows only the geodesics shot
at one black hole. When they hit the computation is stopped. Due to symmetry there
is another black hole above the picture. Some geodesics hit the black hole, others
miss it and leave the grid. The length of the shortest geodesic hitting the black hole
is taken as (half) the separation of the black holes.

be constant in time, such that in effect a geodesic of the 3 metric is found). This is

repeated in different directions and the length of the shortest one is used. (To spare

some time in practice a shot is stopped if the particle would take longer than the

minimum already found.) Fig. (4.4) shows such a measurement. The zoom on the

right side shows that the actual minimum is very close to the angle π which in this

configuration (head on collision) is a shot straight into the hole.

However, using an initial data set that has angular momentum one gets a different

picture. Fig. (4.5) shows a similar measurement for a puncture data set with the

momentum parameter set to P = 0.5. As can be seen clearly the minimum is at 3.19

not at π.

This shows that the distance measurement can be made much more accurate by

using this method. It also indicates that earlier attempts to construct evolutionary

sequences by creating several circular orbits with varying distances also include errors.

The Cook sequences, for instance, finds the momentum of the black holes based on

71



2.8 3 3.2 3.4 3.6
angle

2

2.5

3

3.5

4

4.5

le
ng

th
 o

f 
ge

od
es

ic

3.1 ππ 3.2
angle

2.4122

2.4123

2.4124

2.4125

le
ng

th
 o

f 
ge

od
es

ic

Figure 4.4: Distance measurement of Puncture data in head-on collision: the lengths
of geodesics hitting the black hole vs. the angle they were shot at. The lengths are
measured and the shortest one is taken as the distance. In this configuration the
shortest geodesic was shot at angle π, which is straight into the black hole.
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Figure 4.5: Distance measurement of puncture data with P = 0.5. The minimum is
not at π. Here a straight line measurement would have an error.
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their separation. If the separation is too large the used momentum will be too small

leading to an initial data set that is not in circular orbit but rather on its way to

plunge. This behavior will decrease with growing separation because the momentum

will decrease and the straight line measurement gives the same results as the geodesics

measure. This is in agreement with a recently published result [50].

to+t

a

b
to

Figure 4.6: Distance measurement. Black holes in slice “b” have a smaller measured
distance than in slice a even though slice “a” is taken at a later time and the black
holes are farther apart.

Using this geodesic measurement one obtains a somewhat better notion of distance.

However, as shown in Fig. (4.6), one can easily imagine a situation where even such

a measure leads to a completely wrong interpretation: slicing the same spacetime

of two orbiting black holes in different places with different slices can lead to a case

where the smaller separation is measured at an “earlier” slice. (In Fig. (4.6) the

black holes in slice b have a smaller distance than in slice a but connects the black

holes where they are known to be farther apart.) This is of course quite a problem for

any interpretation of initial data and especially for evolutionary sequences. However,
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since there is no proper notion of a distance available one has to (and so is done in

this paper) use something, knowing about the difficulties.

4.6 Summary

This chapter explained the method of finite differencing, methods to solve elliptic

equations, and error estimates. It mentioned the inner and outer boundary conditions

used in the evolutions and introduced the physical quantities that will be used in the

following chapters.

Finally it introduced a new kind of distance measurement which follows a geodesic

line instead of measurement used until now that follows a straight line. This geodesic

distance measurement is similar to the straight line measurement in head-on collisions

but shows considerable differences for rotating binaries.
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Chapter 5

Evolutions of Puncture data

5.1 Introduction

This chapter deals with evolutions of Puncture data, which were discussed in sec-

tion 3.2.3. The following section introduces the so-called “Cook sequence”, a sequence

of binary black hole initial data trying to mimic an evolution. Some of the elements

of this sequence were evolved as part of this thesis. The results of these evolutions are

presented in the following section and will be published separately [10]. Special atten-

tion is paid to the amount of time these evolutions take to reach a merger, the state

of a binary black hole system where a common apparent horizon (see section 4.5.2)

has appeared. These times seem to indicate that the initial data sets are not actually

in quasi-circular orbits, but that they are in fact nearly plunging together. Some of

the studied dynamical quantities will be reported on.

5.2 The Cook Sequence

The Brill-Linquist data, as well as the puncture data, provide means to construct

an initial data set for orbiting black holes by choosing parameters corresponding to

asymptotic mass and momenta. However, this choice poses a problem, because it is

by far not clear what parameters represent physically realistic orbital parameters.

Cook [57] proposed to use two equal mass black holes with no spin and equal but
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opposite linear momentum in quasi-circular orbit. Of course it is well known that

orbits in relativity will not be exactly circular, as they radiate angular momentum

and energy, and so the radius will decrease over time. But the timescale in which

this happens is thought to be much larger than the orbital period. Additionally the

radiation will also cary away ellipticity and thus circularize the orbit. The approxi-

mation gets better with increasing separation and in the limit of infinite separation

essentially Newtonian physics will govern the dynamics. Since circularity is just an

approximation, the term “quasi- circular” was used.

To construct a quasi-circular orbit, an effective binding energy Eb can be defined

via

Eb = EADM − 2M, (5.1)

with EADM being the total ADM mass of the spacetime. M denotes the apparent

horizon mass of one of the black holes

Mirr =

√

A

16π
, (5.2)

where A is the area of the apparent horizon (as introduced in section 4.5.2. Stable

quasi-circular orbits are identified by finding a minimum in the binding energy as a

function of the proper separation l,

∂Eb

∂l
= 0. (5.3)

One can calculate the angular velocity Ω as seen by an observer at infinity from the

binding energy via [81]

Ω =
∂EADM

∂J
. (5.4)

Cook used isometric Bowen-York data to actually find a sequence of circular orbits

using this technique. Baumgarte adapted it to use it on the ISCO of Puncture data

and Lousto et al. [29] extended this to the entire sequence. This extended Puncture

data version of Cook’s sequence is what is used in this thesis. The data are given
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Name L/M ±X/M ±P/M J/M 2 MΩ m/M
QCB [33] 4.90 1.158 0.334 0.773 0.176 0.450
QC0 [57] 4.99 1.169 0.333 0.779 0.168 0.453

QC1 5.49 1.364 0.286 0.781 0.142 0.463
QC2 5.86 1.516 0.258 0.784 0.127 0.470
QC3 6.67 1.849 0.2148 0.794 0.1019 0.477
QC4 7.84 2.343 0.1743 0.817 0.0760 0.483
QC5 8.84 2.772 0.1514 0.8397 0.0612 0.487

Table 5.1: Sequence of quasi-circular orbits as suggested by Cook and adapted to
Puncture data by Baumgarte and extended by Lousto et al. [29]

.

in table 5.1. It contains a name of the data set, the position X in coordinate space

leading to the proper separation of the black holes L, the linear momentum P , the

resulting angular momentum J , the angular frequency Ω and the irreducible mass m.

All the values are rescaled with the ADM mass M.

Using this same effective potential method a puncture data sequence was con-

structed [33] that later was generalized to incorporate spin [99].

5.3 Merger Times

The data sets of the Cook sequence were evolved using the BSSN formulation, the

1+log slicing, and the hyperbolic Γ-driver with parameters η = 4, p = 1, and n = 4

for the shift (see chapter 2 or [10]). Other parameter choices were tested, though

significant deviation from these values would not permit a stable evolution to merger.

The data sets up to a proper separation of 7.84M could be led to merger.

For each model, runs were performed with grid resolutions of 0.08M and 0.06M on

grids of 384 × 384 × 192 and 512 × 512 × 256 points respectively. A “transition fish-

eye transformation” with parameters a=4, s=0.8, r0=5.5 in the notation of [11] was

performed on the initial data, transforming the coordinate boundaries at 15.48M to a
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Figure 5.1: Log-plot of convergence in Hamiltonian constraint for one element of the
Cook sequence shown at the time of formation of the common AH as determined
from the low resolution run (t = 17.76M). The data with finer resolution is scaled
down

physical distance of 45.42M from the origin. This causally disconnects the boundary

from the merger.

To show that the code is converging in fig. 5.3 a cross section of the Hamiltonian

constraint is plotted for one element of the sequence at the time of merger (t =

15.8) along a grid line in the y direction, (dx, y, dz), adjacent to the location of the

punctures (the punctures are staggered between grid points). A higher resolution run

(dx = 0.04) with boundaries in the same location on a grid of size 768 × 768 × 384

was also carried out and confirmed the convergence results.

As can be seen in the plot the region disconnected from the outer boundary shows

excellent 2nd order convergence, including points in the immediate neighborhood

of the excision region. Significantly, convergence is maintained in the region of the

common horizon formation.
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Figure 5.2: Different merger time measures as a function of proper distance between
the two black hole throats. The actual merger time lines are not as steep as the
expected orbital period line. They are rather parallel to the relativistic head-on and
Newtonian free fall collisions. The righthand y-scale shows the ratio of time vs. the
orbital time. The fraction of the orbital period each data sets evolves before it merges
is going down with increasing separation. Therefore, according to this result, there
will never be an orbit with these data. As indicated by the error bars, different gauge
choices change the numbers only a little, not changing the overall trend.
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The result of the evolutions is surprising: For each of the models studied, a com-

mon apparent horizon appeared in less than half the expected orbital period (see

Fig. (5.2)). This is true even of the further separated cases where assumptions placed

on the initial data might be expected to be more reasonable. The values can be com-

pared to the merger times from a head-on collision, with each puncture starting with

zero linear momentum, or even to the Newtonian free fall time for the same sepa-

ration. The results of such simulations are plotted as well. They are found to run

almost parallel to the inspiral curve.

One has to be very careful interpreting these numbers because as mentioned above

the separation as well as the time used here are not well defined concepts. They

depend on the chosen slicing. Experiments with varying gauge parameters have been

done and indeed, small variations in the merger times were found (and plotted as

error bars in Fig. (5.2)). Even the apparent horizon itself is a slicing dependent

quantity. There are slicings where it does not even exist.

However, finding a common apparent horizon shows the existence of an event hori-

zon (a gauge independent quantity) and the appearance of a common apparent hori-

zon occurs only at some point after the actual event horizon merger. Thus the merger

actually occurs even before the times reported here.

The main argument is the unexpected tendency of the times. The line connecting

the merger times should be steeper than the free fall times. The plot shows the

fraction of an orbit that the data evolve before they merge with respect to the right

vertical axis. This curve clearly shows a decrease with separation. This is contrary

to intuition.

Much hope was put into Thin Sandwich data. Since they are by construction close

to Post-Newtonian data and rely on a helical killing vector, there is reason to believe

that these data will merge at larger and larger fractions of an orbit leading eventually

to an evolution for a full orbit. The following chapter will introduce the Meudon
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data, a kind of Thin Sandwich data.
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Chapter 6

Evolutions of
“Thin Sandwich” Data

6.1 Introduction

This chapter describes the results obtained by evolving thin sandwich type initial data

using a quasi killing vector ansatz, as proposed by the group in Meudon, France [77,

78]. The data are in very good agreement with Post-Newtonian approximations and

are therefore believed to be much closer to astrophysically realistic data than the

effective potential methods.

The chapter will start with an introduction into the construction of the data and

the circular orbits, and will then deal with results evolving them. This represents the

first successful attempt to evolve these data.

6.2 Meudon Data Construction

6.2.1 The Field Equations

The Thin Sandwich data construction, as described in section 3.3, starts with the free

data γab, uab, α, and K and solves eqs. (3.43), (3.44), and (3.45) for Ψ, βa, and Aab.

The Meudon data are conformal Thin Sandwich data equipped with some special

choices that fix the free data. The derivation is somewhat different from York’s

original prescription. The construction starts with the full set of Einstein’s equations
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and makes some additional restrictions:

1. There is assumed to be an approximate helical killing vector1

l =
∂

∂t0
+ Ω

∂

∂φ0
, (6.1)

where t0 and φ0 are the time and angular coordinates at initial time, respectively.

2. The data are assumed to be conformally flat (γab = Ψ4δab), with Ψ being a

conformal factor and δab denoting the identity matrix

3. The data are maximally sliced (trK = 0).

The assumption of a helical killing vector is used because it sets the system in some

rotational state. A stationary metric (one that is either static or rotating) has such

a helical killing vector. Of course this assumption is an approximation since gravita-

tional wave emission will decrease the radius of the orbit of the two black holes, and

therefore break helical symmetry. (If the orbit was not decreasing the system would

radiate for ever thereby increasing the total energy of spacetime infinitely.) But at

least for large separations the timescale of wave emission should be much smaller than

the orbital timescale, hence the quasi-killing-vector approximation should introduce

only small errors. The question up to which distance the helical killing vector as-

sumption is usable are usually based on Post Newtonian calculations. Miller [88] has

done a detailed analysis on the validity of various Post-Newtonian approximations

depending on the initial separations.

In contrast to Cook’s sequence (compare section 5.2) - apart from the actual method

to construct the circular orbit - here the circular orbit assumption is built into the

construction of the data.

As explained earlier, there is no reason to believe a binary black hole to be repre-

sentable by a conformally flat metric at any stage of its evolution. This approximation

1For a definition of a killing vector see appendix C
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induces spurious radiation and though the magnitude of this error is not completely

understood ([86] gives an estimate), it is hoped that it is radiated away early in the

evolution and the system will quickly “settle” down to a more physically realistic

state.

The maximal slicing condition is a commonly used slicing in numerical simulations

of black holes. As explained in section 2.4 it is singularity avoiding, decouples the

constraints, and simplifies the equations by removing trK. The fact that this re-

quirement will lead to an elliptic equation for the lapse is not a obstacle. With the

helical killing vector assumption there will very little evolution. So the expensive

iterative process of solving the equation has to be done only once. With the use

of spectral methods one can achieve very high accuracy for the lapse and the other

elliptic constraint equations.

Using these assumptions five of the ten Einstein’s equations are fulfilled identically.

The remaining five are:

∆α = αΨ4ĀabĀ
ab − 2∂c lnΨ∂cα (6.2)

∆βa +
1

3
∂a∂bβ

b = 2Āab (∂bα− 6α∂b lnΨ) , and (6.3)

∆Ψ = −Ψ5

8
ĀabĀab, (6.4)

where ∂a is the regular partial derivative (since the associated metric is the flat one),

∆ = ∂a∂
a is the ordinary Laplace operator, and Āab = Ψ4Kab−Kγ̄ab is the conformal

extrinsic curvature, here given by:

Āab =
1

2α
(Lβ)ab , (6.5)

(Lβ)ab being the conformal killing operator applied to the shift vector:

(Lβ)ab = ∇aβb + ∇bβa − 2

3
∇cβ

cγ̄ab. (6.6)
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These equations result from applying assumptions (a, b, and c) to Einstein’s equa-

tions. However, they turn out to be the Eqs. (3.43), (3.44), and (3.45) of York’s

conformal Thin Sandwich decomposition.

6.2.2 Boundary Conditions

As explained in chapter 3, after a decomposition of variables is chosen (in this case

the Thin Sandwich one), the free data and the boundary conditions have to be fixed.

For this construction, a two-sheeted topology (Fig (3.3)) was chosen. This was done

by making the throats of the two bridges boundaries of the computational domain

and solve only for the ”upper“ sheet, the outside of the black holes. At this inner

boundary all values where set to be according to the isometry condition of the Misner

data: The interior four metric is mapped under a coordinate transformation I with

Ii(t, ri, θi, φi) =

(

t,
a2

i

ri
, θi, φi

)

, (6.7)

where i numbers the black holes and a is the radius of the horizon of black hole i.

This leads to a topology equivalent to a pair of identical sheets (see Fig. (3.3)).

This property is immediately transferred to the following equations for the 3 metric

γab:

γrr[P ] =
a4

r4
γrr[I(P )] (6.8)

γrθ[P ] =
a2

r2
γrθ[I(P )] (6.9)

γrφ[P ] =
a2

r2
γrφ[I(P )] (6.10)

γθθ[P ] = γθθ[I(P )] (6.11)

γθφ[P ] = γθφ[I(P )] (6.12)

γφφ[P ] = γφφ[I(P )] (6.13)

Because of Eq. (2.8), the extrinsic curvature components have the same behavior

as the metric, except for a possibly different sign. The sign is fixed by choosing the
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direction of the normal vector na. The usual choice of a future pointing normal vector

leads to a negative sign for the isometry transformation of the extrinsic curvature,

which is used here.

For the shift, the isometry requires

βr[P ] = −a
2

r2
βr[I(P )] (6.14)

βθ[P ] = βθ[I(P )] (6.15)

βφ[P ] = βφ[I(P )]. (6.16)

The lapse enters the metric only quadratically (g00 = −1/α2). Therefore when

imposing the isometry I on the metric there is the open choice of the sign for the

lapse:

Iα = ±α. (6.17)

In the Schwarzschild metric the choice of the plus sign would not respect the station-

arity of the metric (the killing vector ∂t of the metric would not carry one slice of

the foliation into another). Contrary to that, a minus sign would do exactly that.

According to [55] this also guarantees the boundary surface to be a trapped surface,

which is a fact the entire procedure is based on. Therefore for this construction the

minus sign was chosen ending up with a slicing that is best viewed in the Kruskal

diagram Fig. (6.1)

Conditions (6.8) to (6.17) lead to requirements at the inner boundary. Eq. (6.15)

requires the vanishing of βr since at the throat r = a and I(P ) = P , which gives

βr(P ) = −βr(P ). The isometry conditions give no restriction for the other compo-

nents of the shift but for their derivatives:

βr|S = 0 (6.18)

∂βr

∂θ
|S = 0 (6.19)

∂βr

∂φ
|S = 0 (6.20)
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Figure 6.1: Kruskal diagram describing the chosen slicing condition for a single
Schwarzschild black hole. t =const. slices are straight line moving upward (future
directed) in region I and downward (past-directed) in I‘ (adapted from [101]).

∂βθ

∂r
|S = 0 (6.21)

∂βφ

∂r
|S = 0, (6.22)

where S is the surface of the throat and is assumed to be a sphere.

For the metric a similar method using Eqs. (6.8) to (6.13) leads to:
(

∂γrr

∂r
+ 2

γrr

r

)

|S = 0 (6.23)

γrθ|S = 0 (6.24)

∂γrθ

∂θ
|S = 0 (6.25)

∂γrθ

∂φ
|S = 0 (6.26)

γrφ|S = 0 (6.27)

∂γrφ

∂θ
|S = 0 (6.28)

∂γrφ

∂φ
|S = 0 (6.29)
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∂γθθ

∂r
|S = 0 (6.30)

∂γθφ

∂r
|S = 0 (6.31)

∂γφφ

∂r
|S = 0. (6.32)

Similar conditions are imposed on the extrinsic curvature.

The inner boundary condition for the lapse requires it to vanish at the throat.

Looking at Eq. (6.5) one can notice that Aab will blow up, if the shift does not vanish

there as well. (Vanishing of (Lβ)ab would suffice, but this would require the shift to

be a killing vector which it is not.) Therefore an additional boundary condition for

the shift is imposed:

βa|S = 0. (6.33)

As mentioned in [77] and described in detail by Cook in [60], this choice is quite

problematic. At first Eq. (6.33) is a change of the boundary condition for the shift,

which in turn changes the boundary from being guaranteed a trapped surface and

the reflection surface for an isometry transformation [55]. If the isometry cannot be

applied at this surface, then this means that the boundary condition may not be

appropriate. And even if they are, a problem using two boundary conditions - one

being a Dirichlet and the other a von Neumann one - is not well posed. So it is not

certain, that there is a solution to the equations at all. So the data are actually not a

solution to Einstein’s equations. However, as stated before the error could be shown

to be very small compared to all other errors.

Therefore, for this thesis a pragmatic view was adopted, saying that the data - even

though they are rigorously not correct and will not converge to a correct solution -

have an error much smaller than numerical errors generated through finite differencing

and are thus not unrealistic within the inaccuracies of the method. This is backed

up by Cook who has fixed the boundary condition [60] and finds similar results. His

method, though correct in principle, is very difficult to apply practically.
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At the outer boundary, all values where set to those of an asymptotically flat metric,

which should be a reasonable choice if the the boundary is far enough away from the

dynamical system. However, it is not compliant with the assumption of the black

holes to be in circular orbit, for if they were, the outgoing radiation would have to be

compensated by incoming one. Since these data are only used as initial data, and do

not radiate forever, this is not seen as a critical problem.

6.2.3 Circular Orbits

Up to now the rotational state of the black holes has not been specified. Since binary

black holes are only determined by their mass, their angular momentum, and their

separation (neglecting a possible charge), these are the only parameters to be set.

Considered is here an equal mass system, and the angular frequencies of the black

holes were set to agree with the orbital angular frequency resulting in a so-called

synchronized (co-rotating) system. This means that the two bodies are always facing

the same side of each other. Such a state is translated into a geometrical condition by

demanding that the throats of the black holes should be killing horizons associated

with the helical symmetry. Each null-geodesic generator of the horizon surfaces Sq1

and S2 must be parallel to the helical killing vector l, which in turn means that l is

a null vector at the throats:

l ∗ l|S1 = 0 and l ∗ l|S2 = 0. (6.34)

The data are set up at a stage were the evolution is assumed to be quasi-stationary.

In this case the killing vector can be chosen to be:

l =
∂

∂t0
+ Ω

∂

∂ψ0
, (6.35)

where t0 and φ0 are the time and azimuthal coordinate of an asymptotically inertial

observer. The time coordinate of the data is to obey this symmetry and agrees with
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the killing vector:

l =
∂

∂t
. (6.36)

Together with Eq. (2.5) this leads to

la = αna + Ωβa. (6.37)

As above all values are set to be conform with the asymptotic flatness assumption.

At the outer boundary this means, in particular, that the conformal factor Ψ and the

lapse function α both go to unity at the outer boundary. Comparing Eqs. (6.37) and

(6.35) one is led to the outer boundary condition for the shift:

β|OB → Ω
∂

∂φ0
. (6.38)

In fact, this is the only place in the system of equations were the orbital frequency Ω

enters. But being a boundary condition it does not follow from an internal condition,

it has to be set according to an external principle. If one chooses the outer boundary

condition βa|OB = 0 for instance one would end up with a head on collision as in the

Misner data. Whatever the choice is, the inner boundary condition ensures that the

black holes will co-rotate with this choice. The problem is to find the correct choice

of Ω to put the black holes in a quasi-circular orbit.

As explained in section 4.5.1 the Komar mass is defined through the presence of a

killing vector. Using Eq. (6.37) as the killing vector, one ends up with the following

expression for the Komar mass:

MK =
1

4π

∮

∞
(∇iα−Kijβj)dSi. (6.39)

With Eq. (6.38) inserted for the shift term this leads to

MK =
1

4π

∮

∞
∇iαdSi − 2ΩJADM . (6.40)

Now [26] (lemma 2.3) states that if there is a helical killing vector (and no linear

momentum) then the following holds:

MK = MADM − 2ΩJADM . (6.41)
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Reversing the argument one gets:

MADM =
1

4π

∮

∞
∇iαdSi ⇐⇒ la is a killing vector. (6.42)

This is what is done here: fix all other parameters, and then vary Ω until Eq. (6.42)

holds (in practice the procedure is stopped when they agree better than 10−5).

6.3 Interpolation of Initial Data

The quasi-killing vector data were computed by the Meudon group with the help of

the Lorene (Langage Objet pour la RElativité NumériquE [41, 42]) code, using the

spectral methods mentioned in chapter 4. The AEI evolution codes use the Cactus

computational toolkit which uses finite differences (see also chapter 4) to solve the

evolution equations. To evolve the data, one therefore needs to translate them to a

finite differencing grid by taking the coefficients of the expansion. The data are given

in forms of binary files containing the spectral coefficients of the solution. Inserting

these coefficients into the series of polynomials one gets an analytic function of the

(numerical) solution. This function is used to get values for the grid-functions of the

finite differencing code.

Once that was done, the machinery of Cactus could be used to evolve the data.

Since one of the important features of the spacetime is the location and evolution

of the horizons, it was hoped to find the horizons numerically in these data as well.

Especially since their location was known, at least initially, to be at the throat. To

find horizons one has to interpolate using grid points on both sides of the horizon

surface. Therefore also points inside the horizon are needed. Fortunately the data

are inversion symmetric. Using this property (Eq. (6.7)) the data inside the horizon

could be filled. For every point inside the black hole (that can be pictured to belong

to the lower sheet in Fig. (6.2)) an image point outside (in the upper sheet, where

the data are given) could be identified (compare Fig. (6.2)).
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Figure 6.2: Use of isometry property of Meudon initial data to fill interior of the
holes.

These points do not have to be grid-points, and had to be interpolated. This was

done using hermitian polynomials of (in this case) second order to interpolate the

functions as well as their derivatives at once leading to a very efficient and accurate

result2. Another way of getting the data at the image points is using the spectral

coefficients provided in the data file (both methods were implemented and compared).

With the interpolation method the points mapped outside the grid (b) needed

special treatment. This was not the case when using the spectral coefficients to get

the data at the image points since the Meudon data are computed on a compactified

grid (that extends to infinity). Only the points (c) that got mapped into the other

black hole needed special treatment.

Here the values first were approximated using quadratic extrapolation and second

the interpolation procedure was repeated several times, hoping that by then, the

data points inside the other black hole are filled. Using this procedure the interior of

the black holes could be filled to high enough accuracy to converge with increasing

resolution.

Using the interpolation method the points (b) were given the outer boundary value,

leading to a small error. With higher resolution the number of points with images

2They are implemented in the Cactus interpolator by J. Thornburg [112]
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Name coordinate distance proper distance ω MADM JADM

M12 12 4.95863 0.164512 5.22409 0.888448
M13 13 5.30006 0.14712 5.0512 0.880134
M14 14 5.63471 0.132657 4.91652 0.874838
M15 15 5.96358 0.120329 4.81426 0.870729
M16 16 6.28724 0.109958 4.73045 0.869769
M18 18 6.9218 0.0930458 4.60392 0.869574

Table 6.1: Physical quantities of the used Meudon initial data sets.

outside the grid increased, leading higher errors close to the singularities. But these

errors were cut away by the excision and did not influence the quality of the evolution.

A similar problem occurred for smaller test runs: creating smaller grids led to many

more points being mapped off the grid, including points that were clearly not close

to flatness. So in smaller test runs these errors needed to be taken into account.

In larger “production” runs this problem did not occur since only points that were

radially far enough out got mapped off the grid, and the flat-metric treatment was a

good approximation.

In all the evolutions done for this thesis the spectral coefficients were used to fill the

interior of the black holes because this method was easier and had a better accuracy.

The data sets are publicly available through the EU network [76]. They consist

of eight sets: a separation in coordinate space of 12, 14, 16, and 18, each with

two numbers of co-location points, 21 or 33 (named by their coordinate separation).

Additionally two sets (using 21 co-location points) with coordinate distances of 13

and 15 were kindly provided by Phillippe Grandclemént, one of the authors of the

Meudon Data. The free parameters were set to get physical quantities of the system

as shown in table (6.1). The coordinates used resulted in very strong requirements on

the numerics. Since the ADM mass is approximately 5, all numerical settings have
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Figure 6.3: Setup of smallest Meudon Data set (M12): 400x400x200 grid-points with
a resolution of 0.1. The black holes are located in coordinate space at ± 6 on the
x-axis. The entire system is rotating counterclockwise. The other data sets have a
similar setup. The right plot is a zoom into one of the black holes.

to be divided by 5 to get units of MADM as they are usually used. For example, an

evolution had to be kept running to approximately 100 to reach 20MADM , resulting

in 4000 iterations (with a spatial resolution of 0.1 and a courant factor of 0.25). In

turn this led to a naturally very high resolution that improved the quality of the runs.

Note that this is a coordinate effect due to the construction procedure. A corre-

sponding puncture data evolution requires approximately 1500 iterations.

Whenever in the following the unit M is used it is implied to be MADM .

The data were set up as shown in for the example of the smallest set in Fig.

(6.3): The black holes are located on the x-axis at ±6 and rotate in the xy-plane

counterclockwise.

For the first experiments, the boundary was put at 20. A minimal resolution of

0.1 had to be chosen. With the horizon radii being 1 and the safety buffer 4 points,

this leads to 12 grid-points being excised along an axis. A coarser resolution would

lead to fewer grid-points inside the horizon (and buffer), too few for excision to work.
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Due to the reflection symmetry across the z=0 plane only the z > 0 part of the

grid had to be used sparing half the size. This minimal setting already leads to a

grid size of 400 x 400 x 200 points. When evolving 120 grid-functions (a quite typical

number for black hole evolutions) and using double precision one easily ends up using

approximately 30 Gbyte of memory. It brings not only the need for a high number

of processors but also requires fast and efficient I/O methods, because the amount of

data written to files is very high.

6.4 Results

These initial data sets were evolved, with the main goal being to lead them to merger,

defined by the appearance of a common horizon, and extract as much information

about the physical properties as possible to compare them with similar information

obtained evolving Puncture data.

6.4.1 Initial Data

The Meudon initial data consist of a metric, an extrinsic curvature, as well as a lapse

and shift that preserve the killing symmetry.

The conformal factor Ψ has the form shown in Fig. (6.4). The metric is conformally

flat, so it is completely described by Ψ. The interior part populated via the isometry

transformation is plotted in a blue dotted line in the 1d plot. The metric shows steep

gradients close to the singularities.

As in the Schwarzschild solution in isotropic coordinates (Eq. (3.16)), these singu-

larities are just coordinate singularities. The physical singularity is to the future of

the slice. Nevertheless those coordinate singularities would lead to a crash of the code

as well, thus the reason for excision. Higher resolution is also required, and would

help to resolve the gradients better, but it would also lead to points even closer to

the singularity, producing even higher gradients. Therefore it would not necessarily
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Figure 6.4: Metric of Meudon initial data (M12). Top: Logarithmic 1d plot along
the x-axis. As comparison function f1 and f2 are added to show the falloff. The inset
shows that close to the singularities the metric falls off faster than r−2 but slower
than r−3. Lower left: contour plot on the xy-plane. (The contour lines are plotted
for 2.2, 3, 4, 10, and 100.) Lower right: logarithmic height field over the xy-plane
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cure code crashes.

The contour plot shows that the first continuous contour line is at gxx ' 2.5 and at

the outer boundary the metric is still 2.2, more than double the value it is assumed

to have at the boundary, and it does not have a circular (Schwarzschild-like) form,

assumed in the extraction procedure for gravitational waves.

The initial extrinsic curvature of the Meudon data is shown in Fig. (6.5). One can

clearly see the spikes inside the horizons. These spikes are introduced by the shift

vector (compare Eq. (6.5)) and are a result of the rigid co-rotation which leads to

large components of the shift at the outer boundary that get mapped via the isometry

into the interior (the infinity of the lower sheet of Fig. (6.2)).

Again the interior part set up through the isometry is blue in the 1d plot which

again is a cut along the x-axis whereas the lower left plot of Fig. (6.5) is a contour

plot on the xy-plane and the lower right plot of Fig. (6.5) is a height field plot of the

values on the xy-plane. The inset is a zoom to show the deviation from zero outside

the black holes. Though visible, it is quite small, less 10−3 from the peak inside the

holes.

As can be seen in the contour plot the extrinsic curvature has a 180 degrees rotation-

symmetry. Since the extrinsic curvature is a generalized time derivative of the metric,

this hints at the rotation state of the system.

One of the supposed advantages of the Meudon data is that they provide an initial

gauge choice that preserves the killing symmetry. The lapse function consistent with

the helical killing vector is plotted in Fig. (6.6). The lapse crosses zero at the horizons

and goes to negative one at the singularities. Outside the black holes, it smoothly

goes to one towards the outer boundary.

The evolution equations themselves are equally valid with a negative lapse, and

there is some empirical evidence with Schwarzschild that using a negative lapse can

result in stable evolutions [20]. This may, however, depend on details of the excision
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Figure 6.5: Extrinsic curvature component Axx of Meudon initial data (M12). 1d plot
along the x-axis. The sharp spikes in the horizon’s interior result from the isometry
transformation on the co-rotation shift. Lower left: contour plot on the xy-plane.
(The contour lines are plotted for 0.01, 0.05, 0.1, and 1.) Lower right: height field
over the xy-plane

98



techniques employed. Note that the points inside (with negative lapse) would evolve

backwards in time whereas the points in the exterior spacetime would evolve forward.

Errors inside the black hole(for instance caused by the excision boundary condition)

will move inwards with time, so with reversed time they will move outwards thus

could pile up at the horizon.

The contour plot shows that the first continuous contour is at α ' 0.5 and the lapse

is still below 0.7 at the outer boundary.

The shift function plays a very important role in these data. As explained earlier,

the coordinates are set up to rotate with the black holes. This is done solely by

the shift. As can be seen in Fig. (6.7), there is a clear rotation in the initial data.

This figure also points to a potential problem. Due to the rigid co-rotation the outer

boundary will move faster than light if put far enough out. This may lead to errors.

Note that there is no outward (radial) component in the initial profile. The left

plot is again a 1d cut through the x-component of the vector along the x-axis. It

shows large spikes in the interior of the horizons. These spikes stem from the co-

rotation profile of the shift and lead to similar spikes in the extrinsic curvature. The

x-component of the shift grows along the y-axis towards the outer boundary. Via the

isometry this growths is mapped into the horizon producing the large spikes.

Since the shift evolution equations (Γ-drivers Eqs. (2.39) and (2.38)) have the

tendency to counterbalance the infall of the grid-points into the black hole, they

mainly act on the radial component of the shift. Therefore the initial profile is

changed dramatically close to the black holes during the evolution (compare Fig.

(6.11) and description in next section). Nevertheless, further away it keeps more or

less the unchanged co-rotation profile (see right plot in Fig. (6.7)).

One of the most important features of Meudon data is that they assume a helical

killing vector. If this assumption was true there would be no evolution of the grid

variables. So an analysis of the time derivative of these functions seems appropriate.
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Figure 6.6: Initial lapse profile of Meudon data (M12). 1d plot along the x-axis. The
lapse crosses zero at the horizons and goes to negative one at the singularities. Lower
left: contour plot on the xy-plane. (The contour lines are plotted for 0.0 (the horizon)
, 0.5, and 0.7.) Lower right: height field over xy-plane.
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Figure 6.7: Initial shift profile of Meudon initial data (M12). Upper left: cut of the
x component of the vector along the x-axis. Upper right: Cut of the y component of
the vector along the x-axis. The insets zoom in to emphasize the small values outside
the horizon. The y-component shows the rotational profile. Lower: Arrow plot of the
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the rotation state.
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The initial time derivative of the metric function gxx is shown in Fig. (6.8) whereas

Fig. (6.9) shows the time derivative of the xx-component of the (traceless) extrinsic

curvature Axx.

As one can see, the metric is very much static and (except for the interpolated

interior) the time derivative is very small. The zoom-in on the right side shows that

its maximum is 5 × 10−5 outside the horizons.

The extrinsic curvature at first sight looks very similar: only at the horizon is there

noticeable deviation from zero. However, here the deviation happens already outside

the horizon (the left plot clearly shows a dip to −0.05 just outside the horizon).
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Figure 6.8: Initial time derivative of the metric function gxx of Meudon initial data
(M12). Left: full scale plot to visualize spikes. Right: zoom-in on y-axis to visualize
interior deviation from zero. This deviation outside the is outside the horizon less
then 7 × 10−5.

Additionally, even away from the horizons the time derivative of the extrinsic cur-

vature is 10−3 and therefore 100 times as big as the time derivative of the metric.

So one can state: The helical killing vector approximation is fulfilled to a very high

degree away from the black holes, limited by the extrinsic curvature, which evolves

on a shorter timescale. This higher limit could come from the fact that the determi-

nation of the time derivative uses the source (right hand sides) of the evolution Eqs.
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Figure 6.9: Initial time derivative of the (traceless) extrinsic curvature component
Axx of Meudon initial data (M12). left: full scale plot to visualize spikes. right:
zoom-in on y-axis to visualize interior deviation from zero. The deviation from zero
outside the horizons is about 10−3.

(2.12) and (2.13). The source of the extrinsic curvature includes a second deriva-

tive of the lapse. This derivative is computed using finite difference methods, and

therefore includes an error that could account for at least part of the deviation from

zero, especially since there are large gradients near the horizons which increase the

finite differencing errors. Thus one sees an indication that very high resolution finite

differencing is needed.

However, another reason for the deviation is probably the regularization. Recall

that since the lapse goes to zero at the horizon, the spatial derivatives of the shift

had to be set to zero as well. As explained earlier the shift itself was also set to zero

at this boundary leading to an inconsistency. This inconsistency results in an (small)

error in the shift that gets transported to an error in the extrinsic curvature.

6.4.2 Evolution

Since experiences with Puncture data have shown that the closer separations of black

holes are much easier to evolve (which is of course natural since the holes will collide

earlier and can then be treated differently, using excision of the merged black hole or

103



−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

t=0

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

t=0.8

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

t=0.95

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

t=1.0

Figure 6.10: Evolution of the lapse function starting with original lapse profile (with
the horizon’s interior filled via the isometry transformation) of Meudon data set M12.
Shown are specific times to demonstrate the special behavior.

even close limit techniques) and also due to limitations of computational resources

demanded by the coordinate choice, the experiments were started with the data set

of smallest separation, M12: the combination of 21 spectral co-location points and a

coordinate separation of 12. (see Fig. (6.3)). Starting with the gauge given by the

Meudon data and evolving the gauge using the live gauges (Γ-driver/1+log) intro-

duced in chapter 2, this data set could be evolved for only around 1M.

In Fig. (6.10) snapshots of this evolution are shown. The first snapshot is taken

at the initial time step. The second is taken at time 0.8M. Apart from the excision,

which was applied already at the first time step the profile is essentially constant.

It stays that way through time 0.95M. One can clearly see that shortly after that

at 1.0M the negative part of the lapse develops a large negative spike, causing the
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Figure 6.11: Evolution of the shift function starting with the original profile (and the
horizon’s interior filled via the isometry transformation). It stays unchanged (except
for excision) until 0.8 at which point a spike begins to develop. Note the different
scale in the first plot.

evolution to crash.

As shown in Fig. (6.11), the shift has a similar behavior. After the initial time

step where excision is done (cutting away part of the interior spike), the profile stays

the same through to time 0.8M (note the change of scale on the y-axis). At 0.95M

one can already see some asymmetries that grow to large spikes at 1.0M, where the

code crashes. However, these changes in the shift are fairly small compared to the

co-rotation profile which is kept stable over the entire evolution.

This behavior can be validated looking at the L2 norm of the Hamiltonian constraint

shown in Fig. (6.14). The Hamiltonian violation stays very small until at time 0.8M

it starts to grow rapidly until the code crashes at 1.0M.
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6.4.3 Gauge Experiments

The gauge choice included in the Meudon data is not mandatory. It is the one, that

is consistent with the assumption of a helical killing vector. Nevertheless, it seems

that this choice is not suited for numerical evolutions. The regions of negative lapse

close to the excision boundary are causing numerical instabilities to grow. Because

of the vanishing of lapse and shift at the horizon any error occurring there will stay

there, accumulate, and eventually grow too large for the code to handle.

Therefore it seemed natural to modify the lapse and set it to zero everywhere inside

the horizon. Recall that these are gauge quantities and as such can be changed freely.

In these regions the only evolution is due to the shift. However, it minimizes evolution

and it reduces instabilities that were created through the negative lapse.

Setting the lapse to zero at the horizons introduces a kink there (the function is only

C0), since the radial derivative of the lapse is not zero on the outside. Looking at the

evolution equation for the extrinsic curvature, Eq. (2.13), one notices that this kink

will propagate through to the time derivative of Kab and may introduce additional

errors, which could be even worse than the original negative lapse. Therefore this

had to be tested numerically.

A third idea was to ignore the suggested lapse profile, in the knowledge that this will

break the (approximate) helical symmetry. Experience with puncture data evolutions

suggest that an initial evolution phase allows the system to settle faster into a stable

configuration. So another alternative is to set the initial α = 1 everywhere.

Fig. (6.12) summarizes the modifications to the lapse suggested here. Plotted are

the α = 1 profile, the original quasi-killing-vector lapse profile, and this same profile

with the interior lapse set to zero (called “frozen” lapse). Since the deviations from

each other are not very large, the right hand plot zooms into one of the black holes.

In Fig. (6.13) the time derivative of the extrinsic curvature is plotted, indicating a

violation of the killing symmetry, and thus an initial evolution kick.
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Figure 6.12: Different initial lapse profiles. The original Meudon profile (with applied
isometry) becomes negative inside the horizons. The “frozen” profile is set to zero
inside the horizon, the “smoothed” is set to zero slowly (already outside the horizon)
and α = 1 is the gauge usually used for puncture data evolutions. The plot on the
right is a zoom in to visualize the differences between the profiles.

It is easy to see what was expected: the original quasi-killing-vector gauge profile

had the smallest time derivative of Kab while completely ignoring the helical gauge

led to the largest time derivative. The changed quasi-killing-vector profile (zeroing

the lapse inside the horizon) is (of course) as good as the original profile outside and

zero inside the horizon, but showed bad spikes at the horizon.

This suggests the idea to smooth out the transition from the original profile to zero.

The (frozen) lapse profile was additionally multiplied by the following function f(ri),

ri being the (coordinate-)distance from black hole i:

f(r) =











0 if r < a

exp(− (r−(a+0.4))2

0.01
) if a < r < a+ 0.4

1 if r > a+ 0.4,

(6.43)

which over approximately 5 grid-points (depending on resolution) creates a smoother

transition from the original lapse profile to zero. In Figs. (6.13) and (6.12) this profile

is called “smoothed”. This smoothed profile creates the expected behavior: Now at

the horizon the time derivative of the extrinsic curvature is very small, but outside

the horizon it is worse. Unfortunately the drawbacks outside the horizon seem to be

stronger than the improvements at the horizon, and this is echoed in the evolution
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Figure 6.13: Time derivative of the extrinsic (trace-free) curvature for different initial
lapse profiles. As expected the α = 1 profile produces the largest time derivative,
the frozen and the smoothed profiles agree except for spikes close to the horizons and
the original Meudon profile clearly gives the smallest time derivative of the extrinsic
curvature. Note that α = 1 has the largest profile but is smooth everywhere.

results.

Recall that the Hamiltonian constraint is zero for solutions of Einstein’s equations.

Derivations from zero is a good indication for inaccuracy. In Fig. (6.14) the L2 norms

of the Hamiltonian constraints of the first few M of evolution beginning with the dif-

ferent lapse profiles is shown. One clearly sees that the α = 1 choice creates larger

initial errors: the Hamiltonian grows quickly. However, very quickly the Hamilto-

nian levels off and even shrinks again such that after time 3 it is smaller than the

Hamiltonian of the original Meudon profile.

The method of smoothing, at least in this form, has proven not helpful. The

Hamiltonian constraint grows so fast, that already at time 0.1M, the code crashes.

The Hamiltonian of the α = 1 profile is quite small, until it suddenly blows up and

the code crashes. As in the evolutions of the original Meudon profile (Figs. (6.10) and

(6.11)) the gauge quantities develop sharp spikes shortly before. Thus the coordinates
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Figure 6.14: Evolution of the L2 norm of Hamiltonian for Meudon data with different
initial lapse profiles (left: zoom into early time). The α = 1 profile has an initially
quickly growing Hamiltonian, but it levels down and behaves very well. The frozen
Meudon profile run behaves best and the Hamiltonian stays below 0.01. The smoothed
lapse profile and the original Meudon profile runs die very early. The two evolution
runs that do not crash early are the ones beginning with α = 1 or the frozen Meudon
lapse profile. After 10 M the α = 1 run died as well.

become too twisted for the code to handle and it crashes.

As a result it seems that the original Meudon lapse profile with the abrupt setting

to zero inside the horizon is the most stable choice.

6.4.4 Long Term Evolutions of M12

Using the best lapse profile (frozen Meudon) of the previous chapter,large scale sim-

ulations were started. The runs used 400 × 400 grid-points with a resolution of 0.1

which set the boundaries to ±20. These evolutions could actually be held stable

enough to lead it to merger.

In Fig. (6.15) the result for a successfully merged run is shown. As the plot shows,

the individual horizon masses could be held constant with an drift below 2%. The

masses actually increase which is consistent with radiation falling into the holes, and

not necessarily numerical error. At time 18M a common horizon appeared.

This plot also shows a quantitative measurement: the two black holes of an initial
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Figure 6.15: Horizon masses of an evolution of M12. It reached a common horizon
after 18M. The horizons could be found consistently always when searched. The
individual horizon masses (2× 2.65) merge to a black hole with a total horizon mass
of 4.51.

irreducible mass of 2.65 merge to a black hole of mass 4.51 initially. But this mass

is quickly growing to be 4.68 at which point it starts to decrease again and oscillates

about 4.6.

A more technically interesting quantity of an horizon is its radius. This radius is

a coordinate depended quantity and can therefore say nothing about the physics.

However, it is crucial for excision, since this can only be done inside this radius.

Looking at Fig. (6.16) one sees that that the system is very symmetric. The two

individual horizon radii are indistinguishable from each other. However, what is

plotted here is the minimal radius of the horizons. This does not imply symmetry

on the shape. The radii grow quickly initially but the growth slows down later.

This growth is wanted. As mentioned in section 2.4.2 it can be controlled by the η

parameter of the Γ-driver shift condition Eq. (2.39), and allows the excision region

to grow accordingly and so swallow the regions of largest constraint violation inside
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Figure 6.16: Horizon radii of an evolution of M12. The radii grow from initially
1.0 to 5.25 controlled using the η parameter of the shift evolution equation (in this
simulation was η = 3.2).

the horizon. Therefore a fine tuning of the η parameter was crucial for a successful

run.

After 1.5M there is a jump in the radius. This jump appeared in all evolutions of

Meudon data and shows in most of the horizon quantities. This could indicate that

initially the horizon finder is tracking an inner horizon. The radius decreases until

the horizon finder looses it and searches again with the old initial guess, finding it

again at radius 1.

To test the symmetry of the initial setting better, the different circumferences men-

tioned in Eqs. (4.31), (4.32), and (4.33) were computed. In coordinate space they

are spheres by construction. With an error of less than half a percent the three cir-

cumferences agree. However, Fig: (6.17) shows that the minimal initial difference is

growing. This is understandable since the black holes are coming closer to each other

and tidal forces should start to deform them. The deformation could also (at least

partly) come from the gauge. As will be seen in Fig. (7.3), some gauge choices can

111



0 5 10 15 20
time (M)

31

32

33

34

35

A
H

 c
ir

cu
m

fe
re

nc
es

equatorial  (c
e
)

polar in xz plane (c
p1

)

polar in yz plane (c
p2

)

Figure 6.17: Horizon circumferences of an evolution of M12. The initially small
deformation grows with time.

lead to deformations of the horizons.

There is some peculiarity about the circumferences though: Initially cp1 (the cir-

cumference in the plane of both black holes) is larger, after 12M however, cp2 (the

circumference in yz-plane, perpendicular to the cp1) is the larger one. This is indicat-

ing strong shearing forces that tear the holes along the line of motion. The equatorial

circumference stays the largest of the three over the entire evolution. In all three cir-

cumferences one can see the before mentioned jump after 1.5M. Note that the total

change of the circumferences is far less than 10% of the circumferences themselves.

The common horizon surface itself is strongly deformed when it appears. As can

be seen in Fig. (6.18) it contains both of the individual horizons but is itself very

concave. This strong deformation gives an explanation why it was not possible to use

the ratio of the polar circumferences versus the equatorial one (see section 4.5.2) to

estimate the quasi-normal ringing. The circumferences are measured along the φ = 0

or φ = π axis (xz-plane or yz-plane). This need not to be the major axes of the

spheroid. Therefore such a deformed (rotating) horizon wouldn’t allow for a reliable
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number. Another important fact can be seen from the picture: the common horizon

takes up almost all the grid. Therefore boundary effects will almost immediately

influence the horizon, which destroys any chance of doing reliable physics.
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Figure 6.18: Visualization of AH surfaces. The individual horizons are contained
in the common one, which is very deformed. The contour at the bottom shows the
location of the horizons at the z = 0 plane: the two small initial horizons, the much
larger individual horizons at the time of merger, and the common horizon, closely
circumscribing the two individual ones.

Looking at the gauge functions one sees the before mentioned behavior. Fig. (6.19)

shows snapshots of the lapse evolution. Clearly can be seen that at least up to 1M

the evolution is fairly static. Apart from the growth of the excision region, the profile

doesn’t change. A later snapshot at 2M shows that the profile starts to collapse.

Between 2M and 4M the lapse seems to flatten across the grid, then starts evolving

back to the familiar profile of a maximal slicing which is reached around 6M. This

profile stabilizes and stays more or less unchanged until time 20M. At this point the

lapse between the black holes starts do decrease rapidly. When it is as smaller than

approximately 0.3 a common horizon appears and excision can cut away the interior.
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Figure 6.19: Lapse evolution of long term Meudon data run (M13). The lapse stays
basically unchanged (except for excision) for 2M, undergoes violent changes until 6M
and stays again unchanged until merger at 23M.
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If one takes the constancy of the gauge profile as an argument for the validity of the

helical killing vector assumption, then one has to claim that after a time of 2 M this

assumption breaks down. This is the point where the profile starts to change rapidly.

Snapshots of the shift evolution are shown in Fig. (6.20). Here a similar behavior

can be seen. Starting with the Meudon profile the shift stays unchanged until 2M.

At that point spikes start to grow at the excision boundary. These spikes grow until

they reach approximately 0.5. In between the two holes these spikes form a profile

commonly seen in evolutions of puncture initial data. Again at about time 6M this

profile is reached and stays unchanged until at 23M a common horizon is found, and

excision cuts away the interior. Recall that a negative shift is pointing left and a

positive one is pointing right in this cut. So the shift points outwards around each

black hole, pulling in the horizon, which has the effect of slowing the growth of the

horizons.

Thus the shift behavior seems to completely fulfill its purpose. It starts off with

a rotating profile and is able to control the infall of the grid-points into the horizon,

thereby regulating the horizon’s radius in coordinate space.

When numerical runs are done a very important question to ask is about the accu-

racy and its reliability.

One indicator is the violation of the constraints, which are not enforced during the

evolution. The Meudon data sets are computed using spectral coefficients. They are

shown to converge exponentially with an increasing number of co-location points [78]

(see Fig. (6.21)). These data had to be mapped onto the finite difference grid. What

can be tested is the convergence of the imported data which should show second

order.

Outside the horizons this tests only the convergence of the constraint computation

within Cactus. The Hamiltonian constraints for three different runs with the resolu-

tion doubled (multiplied by four) are shown in Fig. (6.22). As can be seen they line
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Figure 6.20: Shift evolution of long term Meudon data run. Plotted is the x compo-
nent of the shift vector. The shift stays unchanged (except for excision) until 3M, goes
through violent changes until at about 6M it has transformed to the profile known
from Puncture data evolutions.
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Figure 6.21: Convergence of the Meudon Data. The data show exponential conver-
gence with increasing number of co-location points. Once the error is down to 10−14

numerical errors (adding up with the number of co-location points) is more important,
leading to a growth of the error. (with permission from [78])

up in the region beyond x = 14 (they have already converged so well that they are

indistinguishable). In the region 7 < x < 14 the lines are deviating more and more

getting closer to the horizon. Here higher resolution is needed. However, they are

not converging to zero but to a line with the signature of a Chebychev polynomial.

This is the numerical error that Meudon data have (the construction of which was

using Chebychev polynomials). Inside the horizon even higher resolution is needed.

As shown in Fig. (6.23) which is a zoom using still higher resolution the Hamiltonian

constraint converges here as well. Towards the singularity it becomes worse. Due

to the high gradients a higher resolution is needed the closer one gets to the singu-

larity. In this plot one can also distinguish a non-smoothness at the horizon, which

stems from the boundary error mentioned in section 6.2.2. However, as can be seen

in Figs. (6.22) and (6.23), the Hamiltonian violation is not larger than 10−5 outside

the horizons and can be brought down to that number inside the horizon using very
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Figure 6.22: Convergence of Hamiltonian of Meudon initial data (M12). The Hamil-
tonian constraint for three different resolution is plotted. It has converged nicely in
the region x > 14, can be seen to converge in the region 7 < x < 14, and shows
the need for much higher resolution inside the horizon. It does not converge to zero
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Figure 6.24: Convergence factor of Hamiltonian of Meudon initial data (M12). The
factor stays 2 almost over the entire domain. Close to the horizons the Hamiltonians
of different resolutions cross over (their differences become zero) leading to sharp
spikes in the convergence factor (compare Eq. (4.11)).

high resolution. However, for practical purposes this resolution is much too high.

6.4.5 Comparison of Different Meudon data sets

As mentioned above there are 10 different sets of publicly available Meudon data. Six

sets contained spectral coefficients with 21 co-location points and four sets contained

those with 33 co-location points. So the first comparison was done between the “low”

resolution and the high resolution data sets. M12 was given in both configurations.

So these two were compared. The difference is shown in Fig. (6.25). As can be

seen, the higher resolution data have a smaller Hamiltonian constraint. However, it

is smaller by a factor of 3 approximately, and the 21 co-location point data have a

very small Hamiltonian constraint already. So for these runs it was not necessary to

use the larger (and slower) high resolution data sets in the evolutions.

The data sets M12, M13, and M14 (using 21 co-location points) were evolved until

merger. The behavior of the apparent horizon masses can be seen in Fig. (6.26).
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Figure 6.25: Hamiltonian constraints of M12 data sets with 21 or 33 co-location
points. The 33 co-location points clearly produce a smaller Hamiltonian constraint.
However, the Hamiltonian constraint of the 21 co-location points data is small enough.

They are all kept very constant until they are lost when a common horizon was found

and the interior excised away.

Again a look on the horizon radii tells something about technical details. In

Fig. (6.27) one can see that the radii all grow controlled using the live shift. These

growing radii allow for a growing excision region which helps keeping the constraint

violation down.

The Meudon data set M16 was thoroughly tried to merge as well. (M15 arrived too

late to undergo the same investigation.) A plot of the fine-tuning of the η-parameter

of the shift evolution equation Eq. (2.39) is shown in Fig. (6.28). The resulting L2

norms of the Hamiltonian constraint is shown in Fig. (6.29) . As can be seen the

effect of the η-parameter is not very large and comes into play only at late times

but the effect for the Hamiltonian constraint is crucial. It will blow up earlier if the

horizon grows too low but crash if it growth too fast. For M16 it could not be hold
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Figure 6.27: Horizon radii for evolutions of various Meudon data sets. for the sets
M12, M13, and M14 a common horizon was found.
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Figure 6.28: Growth of horizon radii for evolutions of M16 using different η-
parameters. With growing η the AH radius grows faster allowing for faster growth of
the excision region. However, choosing η too large or too low the run will crash.

down long enough for a common horizon to form.

6.4.6 Comparison of Meudon Data and Puncture data

As explained in chapter 3 it is very difficult to get information about the physical

relevance of initial data. Therefore much hope was put into comparison of different

sets. This was hoped to deliver at least some of the missing information. But com-

paring different initial data sets is quite tricky. Starting with different decompositions

or different choices of the free data one will get different equations for the physical

quantities. This or a different choice of the boundary conditions will naturally give

different results. Now it could well be that different equations with different choices

lead to the same physical results, especially since all these systems try to do the same:

simulate two black holes in orbit about each other. But using a different metric and

extrinsic curvature means using a different slicing. That means that the three dimen-

sional manifold is a different one. Even if one gets similar results for instance for the
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Figure 6.29: L2 norm of Hamiltonian constraint for evolutions of M16 with varying η
parameter. The different growth rates of the horizon radii allow for a larger excision
region, cutting away the numerical errors within the horizon and reducing the overall
norm. However, choosing η too large or too low the run will crash.

distance of the two black holes (with the same mass, angular momentum etc.) this

does not mean they are on similar places in the four dimensional spacetime. This

is already a problem when using the same decomposition but different momenta,

because the momenta (as can be seen for example in Eq. (3.29)) will change the

extrinsic curvature and therefore the slicing. So comparing different initial data sets

has to be done very carefully. The following sections intend to do a comparison of

puncture and Thin Sandwich (Meudon) data.

Distances

As explained in section 4.5.3 the distance measurement used here differs from the

usually used one in idea and outcome. To see the difference between the straight

line measurement and the geodesic measurement the Fig. (6.30) contains both the

straight line and the geodesic measurement. The plot shows the behavior of the

separation of two black holes during a Meudon data evolution (M12). The initial
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difference between the two ways is about 3 or 30% of the measured distance!
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Figure 6.30: Distance measurement. The straight line measurement gives a value
about 30% larger than the geodesic measurement.

The difference of the distance measurements shows another fact: using the straight

line measurement also the change of distance can be misleading. In the figure it is

clearly going up whereas it goes down for the geodesic measurement.

Note that after some initial turbulence of about 5M the distance it levels off more

or less. The leveling could be used to determine whether a data set is in circular orbit.

In Fig. (6.31) the (geodesic) distance of several Puncture data runs are plotted. The

initial linear momentum parameter P was varied between 0.1 and 0.7. The value

Cook determined (0.333191749) for this data set is included as well. At first one can

notice that the initial separations are not equal. As mentioned above the P parameter

is not only changing the linear momentum but also the mass of the black hole, and

thus its area and radius.

As expected one can see also that (after an initial turbulence that seems to be

124



0 2 4 6 8 10
time (M)

0

2

4

6

8

A
H

 s
ep

ar
at

io
n

P = 0.333191749
P = 0.1
P = 0.2
P = 0.3
P = 0.4
P = 0.5
P = 0.6
P = 0.7
M12
M13
M14

Figure 6.31: Distance measurement of puncture data with varying P parameter and
Meudon Data. The initial distance drops for Puncture data and grows for Meudon
data because the individual horizons grow (or shrink). The run with the most constant
separation has the linear momentum determined by Cook. The Meudon data runs
flatten later but stay flat much longer.

needed for all data sets to settle) the separations of the black holes increase or decrease

depending on their linear momentum. (Recall that in this configuration the linear

momentum was set to point perpendicular to the line connecting the two black holes.)

The runs that had the “most horizontal” plateau (and therefore the most circular

orbit) was the one determined by Cook. The Meudon data show a similar behavior:

After the initial transient is gone (which takes longer for the Meudon data) they level

off and stay leveled for much longer than the Puncture data indicating that they are

in a more stable circular orbit.

One of the techniques to keep an evolution stable is to reduce the dynamics in the

evolution variables as far possible. This is achieved by choosing a suitable gauge.

But apart from the gauge the initial time derivative is of crucial importance. Recall

that in Fig. (6.13) the initial time derivative of the (traceless) extrinsic curvature

was indicating already what the evolutions confirmed later, namely which of the (non
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Figure 6.32: Time derivative of the extrinsic (trace-free) curvature for Meudon Data
and Puncture data with varying P parameter.

negative) lapse profiles was best in evolving the data. Therefore comparing initial

time derivatives can show in which data set the initial evolution was reduced most.

In Fig. (6.32) such a comparison is shown. plotted is the initial time derivative of

the extrinsic curvature component Axx for puncture data and for Meudon data. The

resolution in both cases is 0.2M. It can be seen clearly that - except inside the horizons

- the time derivative of the Meudon Data is much smaller. This is expected since one

of the principles of the construction of the Meudon data is the assumption of a helical

killing vector.

Merger Times

As explained in chapter 5 at the AEI research was done on what data sets of the

Cook sequence take how long to build a common horizon. This can of course be done

for the Meudon data as well. For the three sets that created common horizons during

their evolution, the times are plotted in Fig. (6.33).
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Figure 6.33: Merger Times for several sets of initial data. Puncture data follow the
line of free fall data whereas the Meudon data merger times follow a somewhat steeper
curve indicating that their setting is closer to a circular orbit. Lower: The fraction of
the orbital period the data evolve before they merge is shrinking for Puncture data
but growing for Meudon data (with increasing separation).
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This plot suggests that for the Meudon data the common horizons are found at times

that behave more as expected. The line is steeper than the puncture data merger

time line. One could draw the conclusion, that this indicates a better circularity of

the data’s initial orbit. However, a much more thorough investigation is needed to

say something as strong a that. Neither the influence of the boundary could be tested

nor the resolution or gauge dependency.

6.5 Summary

This chapter introduced a new type of initial data (as done by [77, 78]), reported on

evolutions of these data that led to a merger of the black holes, showed differences

between different sets of these data and between the Meudon data and Puncture data.

It was shown that the initial data import technique converges to second order to

the spectral solution. There is a jump at the horizon location that could be resolved

with the finite differenced data. Using a very high resolution one can resolve the

numerical error of the spectral coefficients (Fig. (6.23)).

It was also shown that the gauges suggested by the Meudon group could be used for

numerical evolutions. But to do so the negative lapse within the horizon had to be set

to zero. Otherwise the suggested profiles were taken as the initial data for the gauge

quantities (using the isometry mapping to fill the interior of the holes). The Γ-driver

evolution equation (Eq. (2.39)) used for these runs does not seem to be compatible

with the Meudon shift. The shift undergoes a rapid change and after approximately

6M settled onto a different profile, familiar to that of Puncture evolutions. This

dynamical settling phase is seen in all gauge and the horizon quantities. It seems to

be needed to radiate the transient away.

The evolutions could track the individual horizons very well, even though it seems

that for the first 1.5M an inner horizon is tracked. It was shown that the horizon

masses can be held essentially constant over the entire evolution, to below 2% of drift

128



as shown in Fig. (6.15). This accuracy is achieved even though there is a great deal

of noise in the constraints in the neighborhood of the horizons indicating that the

evolution is not entirely clean.

A comparison of the higher resolution data sets with the lower one showed that

the resolution of the data sets with only 21 co-location points is already high enough

for the use in finite difference codes at resolutions used nowadays. The individual

sets show only little difference in their evolutionary behavior. For all of them the

apparent horizon radii grow (after an initial decrease) allowing excision to keep the

constraint violation down. The common horizons are found at times 18M for M12, at

21M for M13 and at 23.7M for M14. However, it could not be tested how much these

times depend on resolution, boundary effects or gauge. The set M16 could not be

evolved to merger because the constraint violation was growing too fast so that after

a certain time -depending on the gauge chosen- the metric functions and the gauges

were distorted too much for the code to handle.

A comparison of these data with Puncture data has shown considerable differences.

The time derivative of the evolution variables at initial time is much smaller for the

Meudon data leading to a much more stable evolution (see Fig. (6.32)). The distance

measurement gave a constant distance for a longer period of time for the Meudon

data indicating that the circularity is preserved better than in the Puncture data

evolutions.

This results in a sequence of merger times for the Meudon data which follows a

more expected trend. Contrary to the Puncture data, the Meudon data evolve for

a longer fraction of an orbit and with a faster growing fraction as one moves out in

the initial separation sequence. Even though only data sets inside the ISCO could be

evolved to merger, the trend could become even stronger once data sets outside the

ISCO (proper separation of 6.6M) can be led to merger. Assuming a linear growth

of the merger time one can estimate the fraction of an orbital period at the ISCO to
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be roughly 60%. This would agree with Post-Newtonian estimates which also suggest

that the plunge phase should last for 60% of an orbit [51]. One should note that the

linear assumption probably underestimates the actual trend which one would expect

to grow faster when moving to a weaker field.
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Chapter 7

Conclusions

7.1 Summary

This aim of this thesis was to contribute to the solution of the problem of finding

astrophysically relevant initial data for numerical binary black hole evolutions. The

main idea was to compare different initial data construction procedures in terms

of their evolutionary behavior. Puncture (Brandt-Brügmann) data [46] and Thin

Sandwich data in form of the data developed by the group in Meudon [77, 78] were

taken as the initial data, evolved to merger and physical quantities extracted.

To use the Meudon data in finite difference evolutions the interior of the black holes

(not given in the original Meudon data sets) was filled using an isometry condition.

The complete data spread onto the finite difference grid was shown to converge to

second order to the spectral solution (see Fig. (6.24)).

For the Meudon data it could be shown that the gauge suggested by the construction

and extended via an isometry transformation is not suited for numerical evolutions.

However, of several different initial gauge profiles one could be isolated as leading

to stable longterm evolutions: the gauge profile suggested by the construction used

outside the black holes and a constant zero lapse profile inside. For the shift the

initial profile extended by the isometry transformation could be used, though it is

not entirely compatible with the Γ-driver conditions which are commonly employed,
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and this results in a strongly dynamical phase at the beginning.

Using these initial gauge conditions and evolving them with the live gauges Γ-driver

(Eq. (2.39)) for the shift and 1+log (Eqs. (2.30) and (2.31)) for the lapse (see

chapter 2) several of the Meudon data could be evolved to merger (M12, M13, and

M14). The horizon mass could be held constant with an error below 2% during all of

these evolutions.

The Meudon data sets that formed a common horizon did so within a time differ-

ent from comparable Puncture data sets (see Fig. (6.33)). With a growing initial

separation the Meudon data evolved for a longer time before forming a common

horizon. Moreover, the fraction of the orbital period is increasing with the initial

separation. (see table 7.1). This is contrary to the Puncture data where this fraction

actually seems to decrease with the initial separation of the black holes for the em-

ployed gauges. However, only three of the Meudon data sets could be lead to merger.

Due to lack of recourses a convergence test could not be done. The dependency on

boundary effects and different gauge parameters has to be quantified before any strict

statement about the circularity of these orbits can be made, though the demonstrated

trend is in better agreement with intuition.

The method of drift-correction was introduced and successfully used in Puncture

data runs. Comparing the locations of the individual apparent horizons it could be

shown that the Meudon data could profit from the drift-correct method as well.

A new way to measure the separation of two horizons was introduced. This method

uses - contrary to the straight line measure employed until now - a geodesic to compute

the proper distance. It could be shown that the difference between these measure-

ments is non-trivial and grows for systems with larger angular momentum. This

amounts to about 1% for a Puncture data set (QC0) with the linear momentum

parameter P raised to 0.5 and about 30% for the Meudon data (M12).

In addition to the evolutions described here, in chapter 3.5 a new initial data set was
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Name proper distance merger time fraction of orbit

QC0 4.99 16.8 0.450
QC1 5.49 19.2 0.433
QC2 5.86 21.1 0.427
QC3 6.67 25.4 0.413

M12 4.95863 17.30 0.452
M13 5.30006 20.79 0.486
M14 5.63471 24.13 0.507

Table 7.1: Merger times of Puncture and Meudon data. With increasing initial
separation the merger times increase but the fraction of an orbital period decreases
for both of the initial data types.

developed that is not relying on a conformal decomposition of the variables. Instead

it uses a Kerr-Schild-like ansatz (Eq. (3.51)). The treatment of the inner boundary

allows this data set in principle to use a trivial topology (all of the other initial data

mentioned here have a nontrivial one as for example the two-sheeted one shown in

Fig. (3.3)) and therefore a possible candidate for a astrophysically realistic data set.

The new data could be shown to converge for a single perturbed non-rotating black

hole. The solution agrees with a solution of the linearized problem. The method

allows for a more general setting as for instance two black holes in head-on collision,

and will be extended to solve this system as well.

7.2 Outlook

As mentioned throughout this thesis there is much room for improvements on all sides

of the task. Many have been tried already, some of them with great success, some

with less. Here a few ideas will be presented on how to proceed. It is by far not clear

which things will help most (otherwise the community would have done most of them

despite their possible complexness).
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7.2.1 Mesh Refinement

Probably one of the most promising new techniques is mesh refinement. All over

this thesis remarks have been made that higher resolution could improve results and

that problems with the outer boundary could be reduced immensely if they were put

further out. To get the merger times un-effected by boundary errors they should

at least be put at a distance such that they cannot causally influence the black

holes before they merge. Additionally this would also improve extraction of physical

quantities because many of them are defined at infinity and converge only slowly

to the infinity value with increasing radius. As simple computation could show the

needs:

A Meudon data run needs at least a resolution of 0.1 at the black holes. The

smallest data set (M12) merges at coordinate time 90 (recall that the ADM mass is

roughly 5 for these data sets). So the boundaries should at least 90/5 = 18M far

away from the black hole, which is located at ±6. This means that the boundary

has to be 980 grid-points away from the origin. This leads to a bitant grid size of

980 × 980 × 590. Doing a computation similar to the one in section 6.3 (using 120

grid-functions and double precision) this amounts in 5.9 TByte, a requirement none

of todays supercomputers can fulfill.

A solution would be to use mesh refinement. The idea is simple: where there is

higher resolution needed one uses it. But where it is not needed one does not use it.

Especially in systems with compact objects as neutron stars or black holes there are

regions where high resolution is needed but the boundaries have to be put far into the

wave zone, a region where a much coarser resolution is sufficient. So mesh refinement

will enable the runs to use much higher resolution with a much lower requirement

on memory and runtime. Such a technique was implemented into Cactus [102] under

the name “Carpet”. For now it uses only fixed mesh refinement (the high resolution

patches cannot move or change during the evolution with changed requirements).
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But first runs are done and have been very successful. The initial data set M12 (see

chapter 6) was set up using seven layers of refinement. The resulting metric is shown

in Fig. (7.1).
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Figure 7.1: Lapse function of Meudon initial data set M12 set up on “Carpet” using
five levels of refinement. The interior resolution is put to 0.02 but nevertheless the
boundary could be placed at ±80M.

This technique will further improve the runs and make runs possible that tare very

important, as for instance convergence tests on merger times of Meudon data with

the boundaries put far enough out to causally disconnect them from the merger.

7.2.2 Gauge Parameters

One of the immediate things to improve one can think of is the gauges. Using the

newly developed gauges the AEI group described in sections 2.4.1 and 2.4.2 had

tremendous success evolving binary black holes. This method could be used to fur-

ther improve the quality of the runs. This could be done either by fine tuning the

parameters or by improving the equations governing the evolution of the gauges. With
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the help of a faster elliptic solver it could become possible to use the original elliptic

equations for a maximal slicing lapse and a minimal distortion shift. Brügmann et

al. [50] have shown that it is possible to find a gauge for puncture data that will

co-rotate with the data and lead to a stable evolution for more than 100 M even for

binary black holes. This will be tried in the near future. Another idea is referring

to the tests done with the Meudon data lapse profile to improve its behavior during

numerical evolutions (compare section 6.4.3). A similar method could be used to

change the shift. As can be seen in Fig. (6.7) the initial Meudon shift profile does

not have an outward pointing component. This may be a reason for problems that

could be cured by a suitable change of the shift.

7.2.3 Drift-correction

The co-rotation mechanism introduced in section 2.4.3 depends on the apparent hori-

zons. One of the ideas to improve the code is to use an iso-surface of some other

function. A possible candidate is the lapse because experience shows that if an black

hole appears the lapse has a value close to 0.3. So using an iso-surface of 0.3 could

improve at least the speed of the code. But it could also be used in a slightly different

way: instead of tracking only a point (the centroid of the horizons or iso-surfaces) and

adjusting the shift to get a rigid co-rotation, this technique could be used to adjust all

components of the shift to minimize the distortion or the evolution of other functions.

Of course the three components of the shift are not enough to freeze the evolution of

all the six metric components, but a certain minimization could be achieved.

The only part that may not be good enough in the shift treatment is the (increas-

ing) rotation speed. During the evolution the black holes will approach each other

increasing the rotation speed. Some of the angular momentum will be radiated away,

so it cannot be taken to be constant, but the radiation will not suffice to keep the

angular frequency constant. Looking at Fig. (7.3) (left) one sees that the centroids
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of the numerically found horizons rotate through the grid over the evolution time.

This may be responsible for some of the trouble found when evolving this system.

Sooner or later the horizon will hit the excision region (which is, by construction, not

moving) and soon after, the run crashes. To avoid this, the “drift-correct” method

mentioned in section 2.4.3 can be used: the centroids are tracked (exactly as one

sees for Meudon data in Fig. (7.2)) and the shift is given a kick to rotate with the

centroids. The result will be a picture like Fig. (7.3)(left). This technique was up

to now only applied to puncture data evolutions. It could lead to a considerable

improvement for the stability of the Meudon data runs as well since (as can be seen

in Fig. (7.2) the centroids as well as the common horizon have rotated for almost a

quarter of an orbit.
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Figure 7.2: Movement of centroids of horizons for Meudon data evolution without
drift correction. The initial horizons and the common horizon at the time it appears
are drawn as well. The horizons rotate for almost a quarter of an orbit.

Another idea is to use drift-correction also in the radial direction. The shift vector

could not only be adjusted to keep the grid rotating with the system, but also to
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Figure 7.3: Horizon locations of Puncture data run using an angular drift-correction
(left) and an additional angular one (right). The initial horizon is drawn with a
crossed line and the final one with a thick line. The horizon centroid is plotted as
well, but does not move much during the evolution. As can be seen the horizons stay
put but become deformed after a certain time. This could lead to problems finding
it.

regulate the horizon location directly (other than to do it via an evolution equation).

First results using this technique were obtained already and look very promising [50,

67]. Comparing the left plot of Fig. (7.3) with the right plot one can clearly see

the possible improvements. The horizons can be kept in place much more accurate

making much longer evolutions possible. However, using this shift condition the

horizon shapes became deformed. This could lead to problems finding it numerically.

7.2.4 Formulations

All runs for this paper have been done using the BSSN formulation (compare chap-

ter 2.3.2). This method has been shown to work much better than the original ADM

formulation but it is still quite unclear why. To have a better handle on the mathemat-

ics involved and on the numerical behavior of the evolution scheme many suggestions

of different schemes were made. Currently quite some effort is done in the AEI group

to create a first order version of BSSN, for instance. To come up with a definite answer

to what is the best possible evolution system a series of test was developed [9]. They
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start with relatively easy evolutions of gauge waves (flat space in a wave coordinate

system) and go on to evolutions of Brill waves, axisymmetric gravitational waves, a

physical system that proved to be very difficult to handle numerically. These test

were agreed on by a large part of the community. Still there is no definite answer

but currently codes are tested using them. When an answer is found this evolution

system will certainly be tried and there is justified hope that this will improve the

runs largely.

7.2.5 Excision

One of the most compelling ideas on how to deal with singularities still is excision

described in detail in 4.4. However, putting an excision boundary into a region with

large values of all physical quantities raises the question of the boundary conditions.

The simple copying of the values across the boundary that is used until now has shown

tremendous success but is certainly not the best choice possible. But it is quite hard

to find a better one. All theoretical treatments of the boundary problem rely on

the smallness of the fields, an assumption certainly not true inside of black holes.

The errors made in current evolutions are usually swallowed by a growing excision

region (points falling into the black hole will make its radius grow in coordinate space,

thereby increasing the region of possible excision). This is helping a lot but it is not

a good solution because this way sooner or later the entire grid is excised.

Another, a much cleaner and more appropriate solution would be to use the causal

structure of the spacetime. Inside a black hole the light cone is tilted inwards (by

definition, because otherwise light could leave the horizon and it would not be a black

hole). If the numerical method was aware of that, no boundary was needed because

to update a point at the boundary only information further out was used. This idea

is called “causal differencing” [22]. It was used in easier settings (especially in lower

dimensions) but is not anymore due to the complicate handling. But very recently
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the AEI group started working on that issue and hopefully the will be some tests

soon.

Other groups are using grid patches of spherical coordinates around the black hole

which makes it much easier to implement a better boundary condition. Further away

from the boundary the values are then interpolated back onto the Cartesian grid used

in Cactus. This method has been shown to work and is now in the testing phase.

Within the AEI a similar work was started, collaboration has begun and soon this

technique will be tried in regular evolutions using Cactus.

7.2.6 Boundaries

At the outer boundaries the problems are different. The fields are supposedly small

and the causal structure is that of flat space. This means that causal differencing

will not help. The outer boundary is a time-like surface in spacetime. So any space-

like hypersurface (any of the slices used here) will cut it. This problem is treated

extensively in the literature. But usually these treatments simplify the problem to

scalar waves. For those scalar waves and specified angles several solutions have been

found and there is extensive research underway to test these boundary conditions in

generic runs, where there are nonlinear waves at several different incidence angles.

Expectations are high that one or the other of theses suggested techniques will lead

to substantially better results.
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Appendix A

Cauchy Split

Assuming that it is possible to express the 4 dimensional manifold as R3 ⊗R, we are

able to slice it into 3 dimensional subspaces labeled by a real number called time.

Once this split is done, it is useful to define a unit vector nα normal to the slice and

use it to construct a projection tensor:

hαβ = gαβ + nαβ. (A.1)

Applying this to the 4-metric on gets the 3 dimensional metric intrinsic to the slice

is defined (it turns out to be just the spatial part of the 4 dimensional one):

γab = ha
µh

b
νg

µν. (A.1)

Now one has to notice that the covariant derivative built with the 3 metric is just

the projection of the one built with the 4 metric:

va
|b = ha

µh
ν

bv
µ
;ν, (A.2)

where | is denoting the covariant derivative constructed with the 3 metric.

For the derivation of the 3+1 version of Einstein’s equations it is necessary to use

the Gauss-Codazzi equations. To derive them one has to look at the split of the

covariant derivative of a vector T α orthogonal to nα:

Tα;β = hλ
αh

γ
βTλ;γ + nβṪγh

γ
α + nαT

γKγβ − nαnβT
γṅγ . (A.2)
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Applied to the projection tensor this gives:

hαβ;γ = −(ṅαnβ)nγ +Kαγnβ +Kβγnα. (A.3)

To compute the Gauss-Codazzi equations one has to look at the definition of the

curvature tensor using the normal vector nα and project it to the slice:

Rα
βγδnα = nβ;γδ − nβ;δγ

Rα
βγδnαh

β
εh

γ
φh

δ
λ = (nβ;γδ − nβ;δγ)h

β
εh

γ
φh

δ
λ. (A.4)

Now using eq.(A.3) one can write

Rα
βγδnαh

β
εh

γ
φh

δ
λ =

(

(nβ;κh
κ

γ);δ − (nβ;κh
κ

δ);γ)
)

hβ
εh

γ
φh

δ
λ

= (Kβδ;γ −Kβγ;δ)h
β

εh
γ

φh
δ

λ

=
(

Kbd|g −Kbg|d

)

hb
εh

g
φh

d
λ, (A.5)

which leads to the Gauss-Codazzi equation:

Rα
bgdnα =

(

Kbd|g −Kbg|d

)

. (A.6)

Similarly , projecting all four indices down to the slice, one gets:

Rα
bgd = Rabcd +KacKbd −KadKbc. (A.7)

Inserting these equations into Einstein’s equations, one gets

R +K2 +KabK
ab = 0 and (A.8)

Db(K
ab − γabK) = 0. (A.9)
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Appendix B

Bianchi Identities

The Bianchi-identities answer the question whether a given tensor (with the correct

symmetries) can be a Riemannian curvature tensor of a metric. To find a metric

from a given curvature tensor one has to solve 20 differential equations (the defining

equations for Rαβγδ) for the 10 metric components. This usually gives a solution only

if certain integrability conditions are obeyed:

Rαβ<γδ;ε> ≡ Rαβγδ;ε +Rαβδε;γ +Rαβεγ;δ = 0 (B.1)

multiplying by gαδ and gβε and using the symmetry properties of Rαβγδ;ε gives:

gαεgβδRαβ<γδ;ε> = Rε
γ;ε − R;γ +Rε

γ;ε (B.2)

and therefore
(

Rεγ − 1

2
gεγR

)

;ε
= 0 (B.3)

This is a very important consequence for the entire theory: a mathematical property

of the curvature tensor ensure the vanishing of the divergence of the Einstein tensor.

This via Einstein’s equations ensures the vanishing divergence of the matter tensor,

which is the equation of motion. So a mathematical property of the spacetime fixes

the equation of motion. Einstein’s intent when creating the General Relativity Theory

was the opposite. Following Mach’s ideas the matter content of the universe should

fix the spacetime. This problem haunted Einstein for quite a while. It could be
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shown much later [43] that Einstein’s idea of general covariance cannot be used when

Mach’s idea of matter fixing spacetime is used at the same time. Therefore research

is underway, checking if either one of these ideas can be weakened to create a theory

able to accommodate both of the ideas.

their role in the constraints

The Bianchi-identities also have a very important consequence for the constraints:

Writing them as

Gα
β;α = 0 (B.4)

and using the projection tensor hµν = gµν − nµnν will give

Gα
β;α = 0

((

hα
γ + nαnγ

)

Gγ
β

)

;α
= 0

(

hα
γG

γ
β

)

;α
+
(

nγG
γ
β

)

;α
nα +

(

nγG
γ
β

)

nα
;α = 0

−
(

nγG
γ
β

)

;α
nα =

(

hα
γG

γ
β

)

;α
+
(

nγG
γ
β

)

nα
;α

So if the constraints nγG
γ
β are solved initially and the evolution equations hα

γG
γ
β are

solved everywhere in space one has
(

nγG
γ
β

)

;α
nα = 0 . The covariant derivative of the

constraints normal to the hypersurface vanishes and there are no higher derivatives.

Therefore, if the constraints are fulfilled once, the evolution equations and the Bianchi

identities will ensure they are fulfilled always. Sad enough numerical errors will make

none of the terms really vanish. So it is an area of very active research how to

diminish errors either by changing the equations (for instance adding terms consisting

in multiples of the constraints, that are analytically zero but change the numerical

behavior of the equations) or by using more accurate numerical methods.
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Appendix C

Lie Derivatives

The Lie derivative is a very important tool for many quite different applications. It

gives the change of a geometrical object that is moved along a vector vµ (for the

infinitesimal distance ε) with respect to the coordinates system at the starting point.

This is in fact a coordinate transformation:

x⇒ xµ′ = xµ − εvµ, (C.1)

with the Jacobian

Aµ
ν = δµ

ν − εvµ
;ν. (C.2)

Take as an example a vector T ν. At the new point it’s components will be

T µ(P ′) = T µ(P ) + εT µ
;ν(P )vν (C.3)

In the coordinates from the starting point this is

T µ(P ′) = Aµ
ν(T

ν(P ) + εT ν
;α(P )vα) (C.4)

T µ(P ′) = (δµ
ν − εvµ

;ν)(T
ν(P ) + εT ν

;α(P )vα) (C.5)

T µ(P ′) = T µ(P ) + εT µ
;α(P )vα − εT α(P )vµ

;α, (C.6)

where the last equation used terms up to linear order in ε.

The Lie derivative now is defined to be

LvT
ν := lim

ε→0

1

ε
(T µ(P ′) − T µ(P )) (C.7)
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or because of C

LvT
µ := T µ

,νv
ν − T νvµ

,ν. (C.8)

LvTµ := Tµ,νv
ν + Tνv

ν
,µ. (C.9)

The same reasoning leads to the expressions for covariant components of vectors and

for higher rank tensors (as for example the metric):

Lvgµν := gµν,αv
α + gανv

α
,µ + gµαv

α
,ν. (C.10)

It is easy to show that this definition is independent of the derivative used. So for

example using the covariant derivative, one gets:

Lvgµν = gµν,αv
α + gανv

α
,µ + gµαv

α
,ν (C.11)

= (gµν;α + Γσ
µαgσν + Γσ

ναgµσv
α) (C.12)

+gαν(v
α
µ − Γα

σµv
σ) + gµα(vα

ν − Γα
σνv

σ) (C.13)

= vαgµν;α + gανv
α
;µ + gµαv

α
;ν, (C.14)

which in the case of the metric reduces to

Lvgµν = gανv
α
;µ + gµαv

α
;ν = vν;µ + vµ;ν (C.15)

since the covariant derivative of the metric vanishes.

There are some other useful properties of the Lie derivative:

• it follows the Leibniz rule

• it commutes with . . . and partial derivative

• if partial derivatives vanish, Lie derivative and regular directional derivative are

the same
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If the Lie derivative of a metric with respect to a vector vµ vanishes, this vector is

generating a symmetry of the metric. It is therefore very important when one checks

global properties of the metric. Such a vector is called killing vector. It has to obey

killings equation:

Lvgµν := gανv
α
;µ + gµαv

α
;ν = 0 (C.16)

or in other words

vµ;ν + vν;µ = 0. (C.17)
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